32,398 research outputs found

    Simulation of an Axial Vircator

    Full text link
    An algorithm of particle-in-cell simulations is described and tested to aid further the actual design of simple vircators working on axially symmetric modes. The methods of correction of the numerical solution, have been chosen and jointly tested, allow the stable simulation of the fast nonlinear multiflow dynamics of virtual cathode formation and evolution, as well as the fields generated by the virtual cathode. The selected combination of the correction methods can be straightforwardly generalized to the case of axially nonsymmetric modes, while the parameters of these correction methods can be widely used to improve an agreement between the simulation predictions and the experimental data.Comment: 9 pages, 3 figure

    Particle-Gas Dynamics with Athena: Method and Convergence

    Full text link
    The Athena MHD code has been extended to integrates the motion of particles coupled with the gas via aerodynamic drag, in order to study the dynamics of gas and solids in protoplanetary disks and the formation of planetesimals. Our particle-gas hybrid scheme is based on a second order predictor-corrector method. Careful treatment of the momentum feedback on the gas guarantees exact conservation. The hybrid scheme is stable and convergent in most regimes relevant to protoplanetary disks. We describe a semi-implicit integrator generalized from the leap-frog approach. In the absence of drag force, it preserves the geometric properties of a particle orbit. We also present a fully-implicit integrator that is unconditionally stable for all regimes of particle-gas coupling. Using our hybrid code, we study the numerical convergence of the non-linear saturated state of the streaming instability. We find that gas flow properties are well converged with modest grid resolution (128 cells per pressure length \eta r for dimensionless stopping time tau_s=0.1), and equal number of particles and grid cells. On the other hand, particle clumping properties converge only at higher resolutions, and finer resolution leads to stronger clumping before convergence is reached. Finally, we find that measurement of particle transport properties resulted from the streaming instability may be subject to error of about 20%.Comment: 33 pages, accepted to ApJ

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    Full text link
    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2_2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼\simfew×10−8\times10^{-8} L⊙_{\odot}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform to arXiv limits, but are all readable upon adjusting the zoom. Changes from v1: Corrected typos discovered in proofs. Most changes are in the appendi

    A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows IV: full Boltzmann and Model Equations

    Full text link
    Fluid dynamic equations are valid in their respective modeling scales. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the flow study in this regime. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well
    • …
    corecore