3,737 research outputs found

    The Burr X Exponentiated Weibull Model: Characterizations, Mathematical Properties and Applications to Failure and Survival Times Data

    Get PDF
    In this article, we introduce a new three-parameter lifetime model called the Burr X exponentiated Weibull model. The major justification for the practicality of the new lifetime model is based on the wider use of the exponentiated Weibull and Weibull models. We are motivated to propose this new lifetime model because it exhibits increasing, decreasing, bathtub, J shaped and constant hazard rates. The new lifetime model can be viewed as a mixture of the exponentiated Weibull distribution. It can also be viewed as a suitable model for fitting the right skewed, symmetric, left skewed and unimodal data. We provide a comprehensive account of some of its statistical properties. Some useful characterization results are presented. The maximum likelihood method is used to estimate the model parameters. We prove empirically the importance and flexibility of the new model in modeling two types of lifetime data. The proposed model is a better fit than the Poisson Topp Leone-Weibull, the Marshall Olkin extended-Weibull, gamma-Weibull , Kumaraswamy-Weibull , Weibull-Fréchet, beta-Weibull, transmuted modified-Weibull, Kumaraswamy transmuted- Weibull, modified beta-Weibull, Mcdonald-Weibull and transmuted exponentiated generalized-Weibull models so it is a good alternative to these models in modeling aircraft windshield data as well as the new lifetime model is much better than the Weibull-Weibull, odd Weibull- Weibull, Weibull Log-Weibull, the gamma exponentiated-exponential and exponential exponential-geometric models so it is a good alternative to these models in modeling the survival times of Guinea pigs. We hope that the new distribution will attract wider applications in reliability, engineering and other areas of research

    On Bivariate Exponentiated Extended Weibull Family of Distributions

    Get PDF
    In this paper, we introduce a new class of bivariate distributions called the bivariate exponentiated extended Weibull distributions. The model introduced here is of Marshall-Olkin type. This new class of bivariate distributions contains several bivariate lifetime models. Some mathematical properties of the new class of distributions are studied. We provide the joint and conditional density functions, the joint cumulative distribution function and the joint survival function. Special bivariate distributions are investigated in some detail. The maximum likelihood estimators are obtained using the EM algorithm. We illustrate the usefulness of the new class by means of application to two real data sets.Comment: arXiv admin note: text overlap with arXiv:1501.03528 by other author

    Statistical Inference for the Modified Weibull Model Based on the Generalized Order Statistics

    Get PDF
    In recent years, a new class of models has been proposed to exhibit bathtub-shaped failure rate functions. The modified Weibull is one of these models, which is a generalization for the Weibull distribution and is capable of modeling bathtub-shaped and increasing failure rate lifetime data. In this paper, conditional inference has been applied to constructing the confidence intervals for its parameters based on the generalized order statistics. For measuring the performance of this approach compared to the Asymptotic Maximum Likelihood estimates (AMLEs), simulations studies have been carried out for different values of sample sizes and shape parameters. The simulation results indicated that the conditional intervals possess good statistical properties and they can perform quite well even when the sample size is extremely small compared to the AMLE intervals. Finally, a numerical example is given to illustrate the confidence intervals developed in this paper

    Exponentiated Extended Weibull-Power Series Class of Distributions

    Get PDF
    In this paper, we introduce a new class of distributions by compounding the exponentiated extended Weibull family and power series family. This distribution contains several lifetime models such as the complementary extended Weibull-power series, generalized exponential-power series, generalized linear failure rate-power series, exponentiated Weibull-power series, generalized modified Weibull-power series, generalized Gompertz-power series and exponentiated extended Weibull distributions as special cases. We obtain several properties of this new class of distributions such as Shannon entropy, mean residual life, hazard rate function, quantiles and moments. The maximum likelihood estimation procedure via a EM-algorithm is presented.Comment: Accepted for publication Ciencia e Natura Journa
    • …
    corecore