4,558 research outputs found

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm for a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints. These constraints are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on the fly within an efficient solution method. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm and then introduce the associated set of pricing subproblems in detail. The proposed methodology is demonstrated on numerical examples for the multi-stage cutting stock and the quadratic set covering problems

    Kiertovaihtoalgoritmi ja muunnoksia yleistetylle ajoneuvoreititysongelmalle

    Get PDF
    Vehicle routing problems have numerous applications in ïŹelds such as transportation, supply logistics and network design. The optimal design of these routes fall in the category of NP-hard optimization problems, meaning that the computational complexity increases extremely fast with increasing problem size. The Generalized Vehicle Routing Problem (GVRP) is a general problem type that includes a broad variety of other problems as special cases. The main special feature of the GVRP is that the customers are grouped in clusters. For each cluster, only one customer is visited. In this thesis, we implement a heuristic algorithm to solve GVRP instances in reasonable time. Especially, we include a cyclic exchange method that considers a very large search neighborhood. In addition, we study the related Capacitated m-Ring-Star Problem (CmRSP). We present the Distance-Constrained Capacitated m-Ring-Star Problem (DCmRSP) and show that it contains the Multivehicle Covering Tour Problem (MCTP) as a special case. We show that DCmRSP instances can be transformed to (distance-constrained) GVRP with minor adaptations and solved with the same heuristic algorithm. Our algorithm is able to ïŹnd best known solutions to all GVRP test instances; for two of them, our method shows strict improvement. The transformed CmRSP and MCTP instances are solved successfully by the same algorithm with adequate performance.Ajoneuvoreititysongelmilla on lukuisia sovelluksia muun muassa logistiikan ja verkostosuunnittelun aloilla. TĂ€llaisten reittien optimaalinen ratkaiseminen kuuluu NP-vaikeiden optimointiongelmien kategoriaan, eli ratkaisuun vaadittava laskentateho kasvaa erittĂ€in nopeasti ongelman koon suhteen. Yleistetty ajoneuvoreititysongelma (Generalized Vehicle Routing Problem, GVRP) on ongelmatyyppi, joka kattaa joukon muita reititysongelmia erikoistapauksina. GVRP:n selkein erityispiirre on asiakkaiden jako ryppĂ€isiin: kussakin ryppÀÀssĂ€ on kĂ€ytĂ€vĂ€ tasan yhden asiakkaan luona. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn ja toteutetaan heuristinen algoritmi, joka etsii kohtalaisessa ajassa ratkaisuja GVRP-ongelmiin. MenetelmĂ€ sisĂ€ltÀÀ kiertovaihtoalgoritmin, joka kykenee etsimÀÀn ratkaisuja hyvin laajasta ympĂ€ristöstĂ€. Tutkimuksen kohteena on lisĂ€ksi m-rengastĂ€htiongelma (Capacitated m-Ring-Star Problem, CmRSP). Esittelemme ongelman etĂ€isyysrajoitetun version (DCmRSP), ja nĂ€ytĂ€mme, ettĂ€ kyseiseen ongelmaan sisĂ€ltyy usean ajoneuvon peittĂ€vĂ€n reitin ongelma (Multivehicle Covering Tour Problem). NĂ€ytĂ€mme, ettĂ€ DCmRSP-ongelman pystyy pienin muutoksin muuntamaan GVRP-ongelmaksi ja ratkaisemaan samalla heuristisella algoritmilla. Algoritmi löytÀÀ parhaat tunnetut ratkaisut kaikkiin GVRP-testitehtĂ€viin. Kahdessa tapauksessa ratkaisu on parempi aiemmin löydettyihin nĂ€hden. Algoritmi kykenee ratkaisemaan muunnetut CmRSP- ja MCTP-testitehtĂ€vĂ€t kohtalaisella ratkaisulaadulla

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate the proposed approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems

    Spatial coverage in routing and path planning problems

    Get PDF
    Routing and path planning problems that involve spatial coverage have received increasing attention in recent years in different application areas. Spatial coverage refers to the possibility of considering nodes that are not directly served by a vehicle as visited for the purpose of the objective function or constraints. Despite similarities between the underlying problems, solution approaches have been developed in different disciplines independently, leading to different terminologies and solution techniques. This paper proposes a unified view of the approaches: Based on a formal introduction of the concept of spatial coverage in vehicle routing, it presents a classification scheme for core problem features and summarizes problem variants and solution concepts developed in the domains of operations research and robotics. The connections between these related problem classes offer insights into common underlying structures and open possibilities for developing new applications and algorithms

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Lempel-Ziv Data Compression on Parallel and Distributed Systems

    Get PDF
    We present a survey of results concerning Lempel-Ziv data compression on parallel and distributed systems, starting from the theoretical approach to parallel time complexity to conclude with the practical goal of designing distributed algorithms with low communication cost. An extension by Storer to image compression is also discussed

    Emergency rapid mapping with drones: models and solution approaches for offline and online mission planning

    Get PDF
    Die VerfĂŒgbarkeit von unbemannten Luftfahrzeugen (unmanned aerial vehicles oder UAVs) und die Fortschritte in der Entwicklung leichtgewichtiger Sensorik eröffnen neue Möglichkeiten fĂŒr den Einsatz von Fernerkundungstechnologien zur Schnellerkundung in Großschadenslagen. Hier ermöglichen sie es beispielsweise nach GroßbrĂ€nden, EinsatzkrĂ€ften in kurzer Zeit ein erstes Lagebild zur VerfĂŒgung zu stellen. Die begrenzte Flugdauer der UAVs wie auch der Bedarf der EinsatzkrĂ€fte nach einer schnellen ErsteinschĂ€tzung bedeuten jedoch, dass die betroffenen Gebiete nur stichprobenartig ĂŒberprĂŒft werden können. In Kombination mit Interpolationsverfahren ermöglichen diese Stichproben anschließend eine AbschĂ€tzung der Verteilung von Gefahrstoffen. Die vorliegende Arbeit befasst sich mit dem Problem der Planung von UAV-Missionen, die den Informationsgewinn im Notfalleinsatz maximieren. Das Problem wird dabei sowohl in der Offline-Variante, die Missionen vor Abflug bestimmt, als auch in der Online-Variante, bei der die PlĂ€ne wĂ€hrend des Fluges der UAVs aktualisiert werden, untersucht. Das ĂŒbergreifende Ziel ist die Konzeption effizienter Modelle und Verfahren, die Informationen ĂŒber die rĂ€umliche Korrelation im beobachteten Gebiet nutzen, um in zeitkritischen Situationen Lösungen von hoher VorhersagegĂŒte zu bestimmen. In der Offline-Planung wird das generalized correlated team orienteering problem eingefĂŒhrt und eine zweistufige Heuristik zur schnellen Bestimmung explorativer UAV-Missionen vorgeschlagen. In einer umfangreichen Studie wird die LeistungsfĂ€higkeit und KonkurrenzfĂ€higkeit der Heuristik hinsichtlich Rechenzeit und LösungsqualitĂ€t bestĂ€tigt. Anhand von in dieser Arbeit neu eingefĂŒhrten Benchmarkinstanzen wird der höhere Informationsgewinn der vorgeschlagenen Modelle im Vergleich zu verwandten Konzepten aufgezeigt. Im Bereich der Online-Planung wird die Kombination von lernenden Verfahren zur Modellierung der Schadstoffe mit Planungsverfahren, die dieses Wissen nutzen, um Missionen zu verbessern, untersucht. Hierzu wird eine breite Spanne von Lösungsverfahren aus unterschiedlichen Disziplinen klassifiziert und um neue effiziente Modellierungsvarianten fĂŒr die Schnellerkundung ergĂ€nzt. Die Untersuchung im Rahmen einer ereignisdiskreten Simulation zeigt, dass vergleichsweise einfache Approximationen rĂ€umlicher ZusammenhĂ€nge in sehr kurzer Zeit Lösungen hoher QualitĂ€t ermöglichen. DarĂŒber hinaus wird die höhere Robustheit genauerer, aber aufwĂ€ndigerer Modelle und Lösungskonzepte demonstriert
    • 

    corecore