88 research outputs found

    On asymptotically equivalent shallow water wave equations

    Full text link
    The integrable 3rd-order Korteweg-de Vries (KdV) equation emerges uniquely at linear order in the asymptotic expansion for unidirectional shallow water waves. However, at quadratic order, this asymptotic expansion produces an entire {\it family} of shallow water wave equations that are asymptotically equivalent to each other, under a group of nonlinear, nonlocal, normal-form transformations introduced by Kodama in combination with the application of the Helmholtz-operator. These Kodama-Helmholtz transformations are used to present connections between shallow water waves, the integrable 5th-order Korteweg-de Vries equation, and a generalization of the Camassa-Holm (CH) equation that contains an additional integrable case. The dispersion relation of the full water wave problem and any equation in this family agree to 5th order. The travelling wave solutions of the CH equation are shown to agree to 5th order with the exact solution

    Triplet Pairing in Neutron Matter

    Get PDF
    The separation method developed earlier by us [Nucl. Phys. {\bf A598} 390 (1996)] to calculate and analyze solutions of the BCS gap equation for 1^1S0_0 pairing is extended and applied to 3^3P2_2--3^3F2_2 pairing in pure neutron matter. The pairing matrix elements are written as a separable part plus a remainder that vanishes when either momentum variable is on the Fermi surface. This decomposition effects a separation of the problem of determining the dependence of the gap components in a spin-angle representation on the magnitude of the momentum (described by a set of functions independent of magnetic quantum number) from the problem of determining the dependence of the gap on angle or magnetic projection. The former problem is solved through a set of nonsingular, quasilinear integral equations, providing inputs for solution of the latter problem through a coupled system of algebraic equations for a set of numerical coefficients. An incisive criterion is given for finding the upper critical density for closure of the triplet gap. The separation method and its development for triplet pairing exploit the existence of a small parameter, given by a gap-amplitude measure divided by the Fermi energy. The revised BCS equations admit analysis revealing universal properties of the full set of solutions for 3^3P2_2 pairing in the absence of tensor coupling, referring especially to the energy degeneracy and energetic order of these solutions. The angle-average approximation introduced by Baldo et al. is illuminated in terms of the separation-transformed BCS problem and the small parameter expansion..

    Sasa--Satsuma equation: Soliton on a background and its limiting cases

    Get PDF
    We present a multi-parameter family of a soliton on a background solutions to the Sasa-Satsuma equation. The solution is controlled by a set of several free parameters that control the background amplitude as well as the soliton itself. This family of solutions admits a few nontrivial limiting cases that are considered in detail. Among these special cases is the NLSE limit and the limit of rogue wave solutions
    • …
    corecore