3 research outputs found

    A Self-learning Algebraic Multigrid Method for Extremal Singular Triplets and Eigenpairs

    Full text link
    A self-learning algebraic multigrid method for dominant and minimal singular triplets and eigenpairs is described. The method consists of two multilevel phases. In the first, multiplicative phase (setup phase), tentative singular triplets are calculated along with a multigrid hierarchy of interpolation operators that approximately fit the tentative singular vectors in a collective and self-learning manner, using multiplicative update formulas. In the second, additive phase (solve phase), the tentative singular triplets are improved up to the desired accuracy by using an additive correction scheme with fixed interpolation operators, combined with a Ritz update. A suitable generalization of the singular value decomposition is formulated that applies to the coarse levels of the multilevel cycles. The proposed algorithm combines and extends two existing multigrid approaches for symmetric positive definite eigenvalue problems to the case of dominant and minimal singular triplets. Numerical tests on model problems from different areas show that the algorithm converges to high accuracy in a modest number of iterations, and is flexible enough to deal with a variety of problems due to its self-learning properties.Comment: 29 page

    Multiscale Model Reduction for High-contrast Flow Problems

    Get PDF
    Many applications involve media that contain multiple scales and physical properties that vary in orders of magnitude. One example is a rock sample, which has many micro-scale features. Most multiscale problems are often parameter-dependent, where the parameters represent variations in medium properties, randomness, or spatial heterogeneities. Because of disparity of scales in multiscale problems, solving such problems is prohibitively expensive. Among the most popular and developed techniques for efficiently solving the global system arising from a finite element approximation of the underlying problem on a very fine mesh are multigrid methods, multilevel methods, and domain decomposition techniques. More recently, a new large class of accurate reduced-order methods has been introduced and used in various applications. These include Galerkin multiscale finite element methods, mixed multiscale finite element methods, multiscale finite volume methods, and mortar multiscale methods, and so on. In this dissertation, a multiscale finite element method is studied for the computation of heterogeneous problems involving high-contrast, no-scale separation, parameter dependency and nonlinearities. A general formulation of the elliptic heterogeneous problems is discussed, including an oversampling strategy and randomized snapshots generation for a more efficient and accurate computation. Furthermore, a multiscale adaptive algorithm is proposed and analyzed to reduce the computational cost. Then, this multiscale finite element method is extended to the nonlinear high-contrast elliptic problems. Specifically, both continuous and discontinuous Galerkin formulations are considered. In the end, an application to high-contrast heterogeneous Brinkman flow is analyzed
    corecore