6,037 research outputs found

    An Inventory Model for Deteriorating Commodity under Stock Dependent Selling Rate

    Get PDF
    Economic order quantity (EOQ) is one of the most important inventory policy that have to be decided in managing an inventory system. The problem addressed in this paper concerns with the decision of the optimal replenishment time for ordering an EOQ to a supplier. This Model is captured the affect of stock dependent selling rate and varying price. We developed an inventory model under varying of demand-deterioration-price of commodity when the relationship of supplier-grocery-consumer at stochastic environment. The replenishment assumed instantaneous with zero lead time. The commodity will decay of quality according to the original condition with randomize characteristics. First, the model is addressed to solve a problem phenomenon how long is the optimum length of cycle time. Then, an EOQ of commodity to be ordered by will be determined by model. To solve this problem, the first step is developed a mathematical model based on reference’s model, and then solve the model analytically. Finally, an inventory model for deteriorating commodity under stock dependent selling rate and considering selling price was derived by this research. Keywords: deterioration commodity, expected profit, optimal replenishment time stock dependent selling rate

    An optimization of an inventory model of decaying-lot depleted by declining market demand and extended with discretely variable holding costs

    Get PDF
    Inventory management is considered as major concerns of every organization. In inventory holding, many steps are taken by managers that result a cost involved in this row. This cost may not be constant in nature during time horizon in which perishable stock is held. To investigate on such a case, this study proposes an optimization of inventory model where items deteriorate in stock conditions. To generalize the decaying conditions based on location of warehouse and conditions of storing, the rate of deterioration follows the Weibull distribution function. The demand of fresh item is declining with time exponentially (because no item can always sustain top place in the list of consumers’ choice practically e.g. FMCG). Shortages are allowed and backlogged, partially. Conditions for global optimality and uniqueness of the solutions are derived, separately. The results of some numerical instances are analyzed under various conditions

    ONE-TIME ORDER INVENTORY MODEL FOR DETERIORATING AND SHORT MARKET LIFE ITEMS WITH TRAPEZOIDAL TYPE DEMAND RATE

    Get PDF
    Determining the end of the sales period for a one-time order inventory policy for technology products that see rapid innovation and improvement, such as smartphones, is a vital decision. While the market life cycle is short, with long lead times and expensive deliveries. Such situations can force the number of orders to be few or even only once. Products with the latest technology consist of many components that allow for deterioration from the start. This study discusses the effect of the market life cycle, as indicated by the trapezoidal demand rate, on deteriorating item inventory policies. This study will provide new insights into inventory policy. Mathematical models with a non-linear generalized reduced gradient approach can find the optimal end of the selling period and the order size to achieve maximum profit. A sensitivity analysis showed several findings that provide insight for management

    [[alternative]]A Comparison between Two Pricing and Lot-Sizing Models with Partial Backlogging and Deteriorated Items

    Get PDF
    計畫編號:NSC93-2416-H032-007研究期間:200408~200507研究經費:374,000[[abstract]]最近,Abad(2003)討論了退化性產品在有限生產率、指數退化率、部分欠撥和 銷售損失下的售價和批量問題。他的模式是週期開始時即生產,由於生產率大於需求 率,存貨逐漸累積;當存貨數量達到某一水準時,便停止生產。接著,庫存量隨著市 場的需求及退化逐漸減少並產生缺貨現象;此時,只有部分顧客願意等待欠撥。當欠 撥數量達到某一水準時,便又開始生產,缺貨數量逐漸被補足。本研究,我們首先將 推廣他的模式,在目標函數中加入欠撥成本和商譽損失成本。接著,對相同的售價和 批量問題,我們建立一個類似於Goyal and Giri(2003)的新模式。此模式是週期開始 時不生產,造成缺貨,而只有部分顧客願意等待欠撥,當欠撥數量達到某一水準時, 便開始生產,缺貨數量逐漸被補足,接著產生存貨。當存貨數量累積到某一水準時, 便停止生產,庫存量隨著市場的需求及退化,逐漸降至零為止。我們以分析的方法比 較這兩個模式的總利潤,並且指出在某些條件下,其中一個模式優於另一個模式。最 後,舉一些例子說明上述的結論。[[sponsorship]]行政院國家科學委員

    Optimal dynamic pricing and replenishment policies for deteriorating items

    Get PDF
    Marketing strategies and proper inventory replenishment policies are often incorporated by enterprises to stimulate demand and maximize profit. The aim of this paper is to represent an integrated model for dynamic pricing and inventory control of deteriorating items. To reflect the dynamic characteristic of the problem, the selling price is defined as a time-dependent function of the initial selling price and the discount rate. In this regard, the price is exponentially discounted to compensate negative impact of the deterioration. The planning horizon is assumed to be infinite and the deterioration rate is time-dependent. In addition to price, the demand rate is dependent on advertisement as a powerful marketing tool. Several theoretical results and an iterative solution algorithm are developed to provide the optimal solution. Finally, to show validity of the model and illustrate the solution procedure, numerical results are presented

    Multi objective fuzzy inventory model with deterioration, price and time dependent demand and time dependent holding cost

    Get PDF
    In this paper, we have formulated an inventory model with time dependent holding cost, selling price as well as time dependent demand. Multi-item inventory model has been considered under limitation on storage space. Due to uncertainty all the require cost parameters are taken as generalized trapezoidal fuzzy number. Our proposed multi-objective inventory model has been solved by using fuzzy programming techniques which are FNLP, FAGP, WFNLP and WFAGP methods. A numerical example is provided to demonstrate the application of the model. Finally to illustrate the model and sensitivity analysis and graphical representation have been shown.

    Supply chain finance for ameliorating and deteriorating products: a systematic literature review

    Get PDF
    Ameliorating and deteriorating products, or, more generally, items that change value over time, present a high sensitiveness to the surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they should be properly stored along the supply chain to guarantee the desired quality to the consumers. Specifically, ameliorating items face an increase in value if there are stored for longer periods, which can lead to higher selling price. At the same time, the costumers’ demand is sensitive to the price (i.e., the higher the selling price the lower the final demand), sensitiveness that is related to the quality of the products (i.e., lower sensitiveness for high-quality products). On the contrary, deteriorating items lose quality and value over time which result in revenue losses due to lost sales or reduced selling price. Since these products need to be properly stored (i.e., usually in temperature- and humidity-controlled warehouses) the holding costs, which comprise also the energy costs, may be particularly relevant impacting on the economic, environmental, and social sustainability of the supply chain. Furthermore, due to the recent economic crisis, companies (especially, small and medium enterprises) face payment difficulties of customers and high volatility of resources prices. This increases the risk of insolvency and on the other hand the financing needs. In this context, supply chain finance emerged as a mean for efficiency by coordinating the financial flow and providing a set of financial schemes aiming at optimizing accounts payable and receivable along the supply chain. The aim of the present study is thus to investigate through a systematic literature review the two main themes presented (i.e., inventory management models for products that change value over time, and financial techniques and strategies to support companies in inventory management) to understand if any financial technique has been studied for supporting the management of this class of products and to verify the existing literature gap

    Pricing and inventory control policy for non-instantaneous deteriorating items with time- and price-dependent demand and partial backlogging

    Get PDF
    Determining the optimal inventory control and selling price for deteriorating items is of great significance. In this paper, a joint pricing and inventory control model for deteriorating items with price- and time-dependent demand rate and time-dependent deteriorating rate with partial backlogging is considered. The objective is to determine the optimal price, the replenishment time, and economic order quantity such that the total profit per unit time is maximized. After modeling the problem, an algorithm is proposed to solve the resulted problem. We also prove that the problem statement is concave function and the optimal solution is indeed global

    Replenishment Policy for Pareto Type Deteriorating Items With Quadratic Demand under Partial Backlogging And Delay in Payments

    Get PDF
    The present model develops a replenishment policy in which the demand rate is quadratic polynomial-time function. Deterioration rate is a Pareto type function. Shortages are partial backlogging and delay in payments are allowed. Holding cost is a linear function of time. The backlogging rate varies with the waiting duration for the next replenishment. The present paper determines the optimal policy for the individual by minimizing the total cost. The optimization procedure has been explained by a numerical example and a detailed sensitivity analysis of the optimal solution has been carried out to display the effect of various parameters

    Optimal production and delivery scheduling models for a supply chain system of deteriorating items

    Get PDF
    The market is varying from minute to minute nowadays. Increase cooperation and pursue the optimal interest of the integrated supply chain become a more effective way than act alone in the competition. In this research, an integrated inventory policy between singleproducer and multi-buyer is developed and two inventory models are built. The first model extends the research of Lin and Lin (2007) by changing the single-buyer system to the multibuyers one. Both backorder of buyers and deteriorating items of each party (producer’s level, buyers’ level, and during transport) are considered herein. The second model is based on the research of Woo et al.(2001) and Model 1 by takes raw material cost and remanufacturing proceeds into account additional. In both model, the producer and buyers collaboratively work at minimizing their total operation cost and the problems are solved under an assumption of equal replenishments and production cycles. The algorithms to find the optimal solutions are given, and numerical examples are presented. Sensitivity for systems parameters is also analyzed and all calculations are completed by software Matlab and Maple
    corecore