260,263 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Calculation of solvency capital requirements for non-life underwriting risk using generalized linear models

    Get PDF
    The paper presents various GLM models using individual rating factors to calculate the solvency capital requirements for non-life underwriting risk in insurance. First, we consider the potential heterogeneity of claim frequency and the occurrence of large claims in the models. Second, we analyse how the distribution of frequency and severity varies depending on the modelling approach and examine how they are projected into SCR estimates according to the Solvency II Directive. In addition, we show that neglecting of large claims is as consequential as neglecting the heterogeneity of claim frequency. The claim frequency and severity are managed using generalized linear models, that is, negative-binomial and gamma regression. However, the different individual probabilities of large claims are represented by the binomial model and the large claim severity is managed using generalized Pareto distribution. The results are obtained and compared using the simulation of frequency-severity of an actual insurance portfolio.Web of Science26446645

    On the Lie symmetries of a class of generalized Ermakov systems

    Full text link
    The symmetry analysis of Ermakov systems is extended to the generalized case where the frequency depends on the dynamical variables besides time. In this extended framework, a whole class of nonlinearly coupled oscillators are viewed as Hamiltonian Ermakov system and exactly solved in closed form

    Geometric Objects: A Quality Index to Electromagnetic Energy Transfer Performance in Sustainable Smart Buildings

    Get PDF
    Sustainable smart buildings play an essential role in terms of more efficient energy. However, these buildings as electric loads are affected by an important distortion in the current and voltage waveforms caused by the increasing proliferation of nonlinear electronic devices. Overall, buildings all around the world consume a significant amount of energy, which is about one-third of the total primary energy resources. Optimization of the power transfer process of such amount of energy is a crucial issue that needs specific tools to integrate energy-efficient behaviour throughout the grid. When nonlinear loads are present, new capable ways of thinking are needed to consider the effects of harmonics and related power components. In this manner, technology innovations are necessary to update the power factor concept to a generalized total or a true one, where different power components involved in it calculation, properly reflect each harmonic interaction. This work addresses an innovative theory that applies the Poynting Vector philosophy via Geometric Algebra to the electromagnetic energy transfer process providing a physical foundation. In this framework, it is possible to analyse and detect the nature of disturbing loads in the exponential growth of new globalized buildings and architectures in our era. This new insight is based on the concept of geometric objects with different dimension: vector, bivector, trivector, multivector. Within this paper, these objects are correlated with the electromagnetic quantities responsible for the energy flow supplied to the most common loads in sustainable smart buildings. Besides, it must be considered that these phenomena are characterized by a quality index multivector appropriate even for detecting harmonic sources. A numerical example is used to illustrate the clear capabilities of the suggested index when it applies to industrial loads for optimization of energy control systems and enhance comfort management in smart sustainable buildings

    Tomorrow's Metamaterials: Manipulation of Electromagnetic Waves in Space, Time and Spacetime

    Full text link
    Metamaterials represent one of the most vibrant fields of modern science and technology. They are generally dispersive structures in the direct and reciprocal space and time domains. Upon this consideration, I overview here a number of metamaterial innovations developed by colleagues and myself in the holistic framework of space and time dispersion engineering. Moreover, I provide some thoughts regarding the future perspectives of the area
    corecore