6,420 research outputs found

    The Pyramidal Capacitated Vehicle Routing Problem

    Get PDF
    This paper introduces the Pyramidal Capacitated Vehicle Routing Problem (PCVRP) as a restricted version of the Capacitated Vehicle Routing Problem (CVRP). In the PCVRP each route is required to be pyramidal in a sense generalized from the Pyramidal Traveling Salesman Problem (PTSP). A pyramidal route is de ned as a route on which the vehicle rst visits customers in increasing order of customer index, and on the remaining part of the route visits customers in decreasing order of customer index. Provided that customers are indexed in nondecreasing order of distance from the depot, the shape of a pyramidal route is such that its traversal can be divided in two parts, where on the rst part of the route, customers are visited in nondecreasing distance from the depot, and on the remaining part of the route, customers are visited in nonincreasing distance from the depot. Such a route shape is indeed found in many optimal solutions to CVRP instances. An optimal solution to the PCVRP may therefore be useful in itself as a heuristic solution to the CVRP. Further, an attempt can be made to nd an even better CVRP solution by solving a TSP, possibly leading to a non-pyramidal route, for each of the routes in the PCVRP solution. This paper develops an exact branch-and-cut-and-price (BCP) algorithm for the PCVRP. At the pricing stage, elementary routes can be computed in pseudo-polynomial time in the PCVRP, unlike in the CVRP. We have therefore implemented pricing algorithms that generate only elementary routes. Computational results suggest that PCVRP solutions are highly useful for obtaining near-optimal solutions to the CVRP. Moreover, pricing of pyramidal routes may due to its eciency prove to be very useful in column generation for the CVRP.vehicle routing; pyramidal traveling salesman; branch-and-cut-and-price

    Path Planning for Cooperative Routing of Air-Ground Vehicles

    Full text link
    We consider a cooperative vehicle routing problem for surveillance and reconnaissance missions with communication constraints between the vehicles. We propose a framework which involves a ground vehicle and an aerial vehicle; the vehicles travel cooperatively satisfying the communication limits, and visit a set of targets. We present a mixed integer linear programming (MILP) formulation and develop a branch-and-cut algorithm to solve the path planning problem for the ground and air vehicles. The effectiveness of the proposed approach is corroborated through extensive computational experiments on several randomly generated instances

    A review of the Tabu Search Literature on Traveling Salesman Problems

    Get PDF
    The Traveling Salesman Problem (TSP) is one of the most widely studied problems inrncombinatorial optimization. It has long been known to be NP-hard and hence research onrndeveloping algorithms for the TSP has focused on approximate methods in addition to exactrnmethods. Tabu search is one of the most widely applied metaheuristic for solving the TSP. Inrnthis paper, we review the tabu search literature on the TSP, point out trends in it, and bringrnout some interesting research gaps in this literature.
    • …
    corecore