657 research outputs found

    Uplink beamforming for the FDD mode of UTRA

    Get PDF
    This paper presents some link level simulation results for the evaluation of adaptive antennas in the uplink of the FDD mode of UTRA (UMTS terrestrial radio access). Two families of algorithms were initially considered, the basic difference between them being their ability/disability to suppress the contribution from W-CDMA directional interfering sources. Two distinct schemes were established as representatives for each family and their performance was evaluated in presence of some illustrative interfering scenarios. In the light of the results it is shown that time-reference beamforming algorithms suffer from severe beam pattern distortion effects when applied as such. This in turn causes harsh performance degradation in terms of raw BER, especially at high SINR levels. It is shown that these shortcomings are essentially caused by the uplink multiplexing of the traffic channel, which is seen by the base station as a powerful interfering source coming from the direction of arrival of the desired user.Peer ReviewedPostprint (published version

    On the Uplink Performance of Asynchronous LAS-CDMA

    No full text
    In this paper closed-form formulae are derived for characterizing the BER performance of Large Area Synchronous CDMA (LAS-CDMA) as a function of both the number of resolvable paths Lp and the maximum delay difference τmax, as well as the number of users K, when communicating over a Nakagami-m fading channel. Moreover, we comparatively studies the performance of LAS-CDMA and the traditional random code based DS-CDMA

    Raking the Cocktail Party

    Get PDF
    We present the concept of an acoustic rake receiver---a microphone beamformer that uses echoes to improve the noise and interference suppression. The rake idea is well-known in wireless communications; it involves constructively combining different multipath components that arrive at the receiver antennas. Unlike spread-spectrum signals used in wireless communications, speech signals are not orthogonal to their shifts. Therefore, we focus on the spatial structure, rather than temporal. Instead of explicitly estimating the channel, we create correspondences between early echoes in time and image sources in space. These multiple sources of the desired and the interfering signal offer additional spatial diversity that we can exploit in the beamformer design. We present several "intuitive" and optimal formulations of acoustic rake receivers, and show theoretically and numerically that the rake formulation of the maximum signal-to-interference-and-noise beamformer offers significant performance boosts in terms of noise and interference suppression. Beyond signal-to-noise ratio, we observe gains in terms of the \emph{perceptual evaluation of speech quality} (PESQ) metric for the speech quality. We accompany the paper by the complete simulation and processing chain written in Python. The code and the sound samples are available online at \url{http://lcav.github.io/AcousticRakeReceiver/}.Comment: 12 pages, 11 figures, Accepted for publication in IEEE Journal on Selected Topics in Signal Processing (Special Issue on Spatial Audio

    Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

    Get PDF
    Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation. This work has the main goal of comparing the performance of TR-based systems with traditional non-prefiltered schemes, in the novel context of a distributed and uncoordinated IR-UWB network, under more realistic assumptions including the presence of ISI/IFI and multipath dispersion. Results show that, lack of power control and imperfect channel knowledge affect the performance of both non-prefiltered and TR systems; in these conditions, TR prefiltering still guarantees a performance improvement in sparse/low-loaded and overloaded network scenarios, while the opposite is true for less extreme scenarios, calling for the developement of an adaptive scheme that enables/disables TR prefiltering depending on network conditions

    Enhanced Receivers for Interference Cancellation in 3G Systems

    Get PDF
    Interference cancellation and multiuser detection in CDMA systems are still actual research topics. These techniques enable us to deal with interference and to increase system capacity. In this paper, a so-called Generalized RAKE receiver, an Uplink generalized multiuser detection and a Blind adaptive multiuser detection are described. These algorithms are compared with conventional receivers and their properties are verified via simulations. The results imply that some of these algorithms are able to overcome the performance of the conventional receivers

    Channel estimation and signal enhancement for DS-CDMA systems

    Get PDF
    This dissertation focuses on topics of Bayesian-based multiuser detection, space-time (S-T) transceiver design, and S-T channel parameter estimation for direct-sequence code-division multiple-access (DS-CDMA) systems. Using the Bayesian framework, various linear and simplified nonlinear multiuser detectors are proposed, and their performances are analyzed. The simplified non-linear Bayesian solutions can bridge the performance gap between sub-optimal linear multiuser detectors and the optimum multiuser detector. To further improve the system capacity and performance, S-T transceiver design approaches with complexity constraint are investigated. Novel S-T receivers of low-complexity that jointly use the temporal code-signature and the spatial signature are proposed. Our solutions, which lead to generalized near-far resistant S-T RAKE receivers, achieve better interference suppression than the existing S-T RAKE receivers. From transmitter side, we also proposed a transmit diversity (TD) technique in combination with differential detection for the DS-CDMA systems. It is shown that the proposed S-T TD scheme in combination with minimum variance distortionless response transceiver (STTD+MVDR) is near-far resistant and outperforms the conventional STTD and matched filter based (STTD+MF) transceiver scheme. Obtaining channel state information (CSI) is instrumental to optimum S-T transceiver design in wireless systems. Another major focus of this dissertation is to estimate the S-T channel parameters. We proposed an asymptotic, joint maximum likelihood (ML) method of estimating multipath channel parameters for DS-CDMA systems. An iterative estimator is proposed to further simplify the computation. Analytical and simulation results show that the iterative estimation scheme is near-far resistant for both time delays and DOAs. And it reaches the corresponding CRBs after a few iterations

    An Efficient Finger Allocation Method for the Maximum Likelihood RAKE Receiver

    Get PDF
    In wideband wireless communication systems the RAKE receiver is commonly used to collect the resolvable multipath energy and counter the effects of fading through diversity. However, in channels with large delay and energy spread, its high complexity still remains a major issue. This motivates the study and application of computationally efficient finger placement algorithms that significantly reduce the receiver complexity with a reasonable performance loss. In this paper, a low–complexity maximum likelihood RAKE receiver, the Suboptimum – Maximum Power Minimum Correlation (S–MPMC) RAKE is proposed. The allocation of its first two fingers is based on the received signal correlation properties. Their positions determine also the placement of the rest of the fingers. Simulation results are provided to show the operation of the receiver and demonstrate its performance. Comparisons with relevant methods are performed to corroborate the merits of the proposal. The balance on the performance and the complexity of the technique makes it suitable for use in commercial wideband communication systems
    • 

    corecore