2,187 research outputs found

    Geometric phases in astigmatic optical modes of arbitrary order

    Full text link
    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different order, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of non-astigmatic optical modes with orbital angular momentum states in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights in the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schr\"odinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.Comment: final versio

    Accurate calculation of the solutions to the Thomas-Fermi equations

    Get PDF
    We obtain highly accurate solutions to the Thomas-Fermi equations for atoms and atoms in very strong magnetic fields. We apply the Pad\'e-Hankel method, numerical integration, power series with Pad\'e and Hermite-Pad\'e approximants and Chebyshev polynomials. Both the slope at origin and the location of the right boundary in the magnetic-field case are given with unprecedented accuracy

    WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    Full text link
    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schr\"odinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry.The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry.The present Part I deals with the description of closed quantum systems in terms of Schr\"odinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization.The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics.The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found

    Harmonic states for the free particle

    Full text link
    Different families of states, which are solutions of the time-dependent free Schr\"odinger equation, are imported from the harmonic oscillator using the Quantum Arnold Transformation introduced in a previous paper. Among them, infinite series of states are given that are normalizable, expand the whole space of solutions, are spatially multi-localized and are eigenstates of a suitably defined number operator. Associated with these states new sets of coherent and squeezed states for the free particle are defined representing traveling, squeezed, multi-localized wave packets. These states are also constructed in higher dimensions, leading to the quantum mechanical version of the Hermite-Gauss and Laguerre-Gauss states of paraxial wave optics. Some applications of these new families of states and procedures to experimentally realize and manipulate them are outlined.Comment: 21 pages, 3 figures. Title changed, content added, references adde

    Contact structures of arbitrary codimension and idempotents in the Heisenberg algebra

    Full text link
    A contact manifold is a manifold equipped with a distribution of codimension one that satisfies a `maximal non-integrability' condition. A standard example of a contact structure is a strictly pseudoconvex CR manifold, and operators of analytic interest are the tangential Cauchy-Riemann operator and the Szego projector onto its kernel. The Heisenberg calculus is the natural pseudodifferential calculus developed originally for the analysis of these operators. We introduce a `non-integrability' condition for a distribution of arbitrary codimension that directly generalizes the definition of a contact structure. We call such distributions polycontact structures. We prove that the polycontact condition is equivalent to the existence of generalized Szego projections in the Heisenberg calculus, and explore geometrically interesting examples of polycontact structures.Comment: 13 pages. Second version contains major revisio
    corecore