57 research outputs found

    Modelling fraud detection by attack trees and Choquet integral

    Get PDF
    Modelling an attack tree is basically a matter of associating a logical ÒndÓand a logical ÒrÓ but in most of real world applications related to fraud management the Ònd/orÓlogic is not adequate to effectively represent the relationship between a parent node and its children, most of all when information about attributes is associated to the nodes and the main problem to solve is how to promulgate attribute values up the tree through recursive aggregation operations occurring at the Ònd/orÓnodes. OWA-based aggregations have been introduced to generalize ÒndÓand ÒrÓoperators starting from the observation that in between the extremes Òor allÓ(and) and Òor anyÓ(or), terms (quantifiers) like ÒeveralÓ ÒostÓ ÒewÓ ÒomeÓ etc. can be introduced to represent the different weights associated to the nodes in the aggregation. The aggregation process taking place at an OWA node depends on the ordered position of the child nodes but it doesnÕ take care of the possible interactions between the nodes. In this paper, we propose to overcome this drawback introducing the Choquet integral whose distinguished feature is to be able to take into account the interaction between nodes. At first, the attack tree is valuated recursively through a bottom-up algorithm whose complexity is linear versus the number of nodes and exponential for every node. Then, the algorithm is extended assuming that the attribute values in the leaves are unimodal LR fuzzy numbers and the calculation of Choquet integral is carried out using the alpha-cuts.Fraud detection; attack tree; ordered weighted averaging (OWA) operator; Choquet integral; fuzzy numbers.

    Weighted‐selective aggregated majority‐OWA operator and its application in linguistic group decision making

    Get PDF
    This paper focuses on the aggregation operations in the group decision-making model based on the concept of majority opinion. The weighted-selective aggregated majority-OWA (WSAM-OWA) operator is proposed as an extension of the SAM-OWA operator, where the reliability of information sources is considered in the formulation. The WSAM-OWA operator is generalized to the quanti- fied WSAM-OWA operator by including the concept of linguistic quantifier, mainly for the group fusion strategy. The QWSAM-IOWA operator, with an ordering step, is introduced to the individual fusion strategy. The proposed aggregation operators are then implemented for the case of alternative scheme of heterogeneous group decision analysis. The heterogeneous group includes the consensus of experts with respect to each specific criterion. The exhaustive multicriteria group decision-making model under the linguistic domain, which consists of two-stage aggregation processes, is developed in order to fuse the experts' judgments and to aggregate the criteria. The model provides greater flexibility when analyzing the decision alternatives with a tolerance that considers the majority of experts and the attitudinal character of experts. A selection of investment problem is given to demonstrate the applicability of the developed model

    OWA-based aggregation operations in multi-expert MCDM model

    Get PDF
    This paper presents an analysis of multi-expert multi-criteria decision making (ME-MCDM) model based on the ordered weighted averaging (OWA) operators. Two methods of modeling the majority opinion are studied as to aggregate the experts' judgments, in which based on the induced OWA operators. Then, an overview of OWA with the inclusion of different degrees of importance is provided for aggregating the criteria. An alternative OWA operator with a new weighting method is proposed which termed as alternative OWAWA (AOWAWA) operator. Some extensions of ME-MCDM model with respect to two-stage aggregation processes are developed based on the classical and alternative schemes. A comparison of results of different decision schemes then is conducted. Moreover, with respect to the alternative scheme, a further comparison is given for different techniques in integrating the degrees of importance. A numerical example in the selection of investment strategy is used as to exemplify the model and for the analysis purpose

    Evaluation of Quantified Statements using Gradual Numbers - 64

    Get PDF
    Dr. Ludovic Liétard is currently assistant professor at the University of Rennes 1 (IUT Lannion) in France. His research mainly concerns flexible querying of relational databases using fuzzy set theory and various applications of fuzzy set theory in databases. Dr. Daniel Rocacher is currently assistant professor at the University of Rennes 1 (ENSSAT Lannion) in France. He has proposed new directions to define gradual numbers in the framework of fuzzy set theory. His current research concerns their applications in databases. Evaluation of Quantified Statements using Gradual Numbers -2 -Abstract. This paper is devoted to the evaluation of quantified statements which can be found in many applications as decision-making, expert systems or flexible querying of relational databases using fuzzy set theory. Its contribution is to introduce the main techniques to evaluate such statements and to propose a new theoretical background for the evaluation of quantified statements of type "Q X are A" and "Q B X are A". In this context, quantified statements are interpreted using an arithmetic on gradual numbers from ℕ f , ℤ f and ℚ f . It is shown that the context of fuzzy numbers provides a framework to unify previous approaches and can be the base for the definition of new approaches

    Some views on information fusion and logic based approaches in decision making under uncertainty

    Get PDF
    Decision making under uncertainty is a key issue in information fusion and logic based reasoning approaches. The aim of this paper is to show noteworthy theoretical and applicational issues in the area of decision making under uncertainty that have been already done and raise new open research related to these topics pointing out promising and challenging research gaps that should be addressed in the coming future in order to improve the resolution of decision making problems under uncertainty

    Fuzzy cardinality based evaluation of quanti®ed sentences

    Get PDF
    Quantified statements are used in the resolution of a great variety of problems. Several methods have been proposed to evaluate statements of types I and II. The objective of this paper is to study these methods, by comparing and generalizing them. In order to do so, we propose a set of properties that must be fulfilled by any method of evaluation of quantified statements, we discuss some existing methods from this point of view and we describe a general approach for the evaluation of quantified statements based on the fuzzy cardinality and fuzzy relative cardinality of fuzzy sets. In addition, we discuss some concrete methods derived from the mentioned approach. These new methods fulfill all the properties proposed and, in some cases, they provide an interpretation or generalization of existing methods
    corecore