3,117 research outputs found

    A graph polynomial for independent sets of bipartite graphs

    Get PDF
    We introduce a new graph polynomial that encodes interesting properties of graphs, for example, the number of matchings and the number of perfect matchings. Most importantly, for bipartite graphs the polynomial encodes the number of independent sets (#BIS). We analyze the complexity of exact evaluation of the polynomial at rational points and show that for most points exact evaluation is #P-hard (assuming the generalized Riemann hypothesis) and for the rest of the points exact evaluation is trivial. We conjecture that a natural Markov chain can be used to approximately evaluate the polynomial for a range of parameters. The conjecture, if true, would imply an approximate counting algorithm for #BIS, a problem shown, by [Dyer et al. 2004], to be complete (with respect to, so called, AP-reductions) for a rich logically defined sub-class of #P. We give a mild support for our conjecture by proving that the Markov chain is rapidly mixing on trees. As a by-product we show that the "single bond flip" Markov chain for the random cluster model is rapidly mixing on constant tree-width graphs

    Reconciling Graphs and Sets of Sets

    Full text link
    We explore a generalization of set reconciliation, where the goal is to reconcile sets of sets. Alice and Bob each have a parent set consisting of ss child sets, each containing at most hh elements from a universe of size uu. They want to reconcile their sets of sets in a scenario where the total number of differences between all of their child sets (under the minimum difference matching between their child sets) is dd. We give several algorithms for this problem, and discuss applications to reconciliation problems on graphs, databases, and collections of documents. We specifically focus on graph reconciliation, providing protocols based on set of sets reconciliation for random graphs from G(n,p)G(n,p) and for forests of rooted trees

    Exact Results on Potts Model Partition Functions in a Generalized External Field and Weighted-Set Graph Colorings

    Full text link
    We present exact results on the partition function of the qq-state Potts model on various families of graphs GG in a generalized external magnetic field that favors or disfavors spin values in a subset Is={1,...,s}I_s = \{1,...,s\} of the total set of possible spin values, Z(G,q,s,v,w)Z(G,q,s,v,w), where vv and ww are temperature- and field-dependent Boltzmann variables. We remark on differences in thermodynamic behavior between our model with a generalized external magnetic field and the Potts model with a conventional magnetic field that favors or disfavors a single spin value. Exact results are also given for the interesting special case of the zero-temperature Potts antiferromagnet, corresponding to a set-weighted chromatic polynomial Ph(G,q,s,w)Ph(G,q,s,w) that counts the number of colorings of the vertices of GG subject to the condition that colors of adjacent vertices are different, with a weighting ww that favors or disfavors colors in the interval IsI_s. We derive powerful new upper and lower bounds on Z(G,q,s,v,w)Z(G,q,s,v,w) for the ferromagnetic case in terms of zero-field Potts partition functions with certain transformed arguments. We also prove general inequalities for Z(G,q,s,v,w)Z(G,q,s,v,w) on different families of tree graphs. As part of our analysis, we elucidate how the field-dependent Potts partition function and weighted-set chromatic polynomial distinguish, respectively, between Tutte-equivalent and chromatically equivalent pairs of graphs.Comment: 39 pages, 1 figur
    • …
    corecore