347 research outputs found

    The generalized 3-connectivity of Cartesian product graphs

    Full text link
    The generalized connectivity of a graph, which was introduced recently by Chartrand et al., is a generalization of the concept of vertex connectivity. Let SS be a nonempty set of vertices of GG, a collection {T1,T2,...,Tr}\{T_1,T_2,...,T_r\} of trees in GG is said to be internally disjoint trees connecting SS if E(Ti)∩E(Tj)=∅E(T_i)\cap E(T_j)=\emptyset and V(Ti)∩V(Tj)=SV(T_i)\cap V(T_j)=S for any pair of distinct integers i,ji,j, where 1≤i,j≤r1\leq i,j\leq r. For an integer kk with 2≤k≤n2\leq k\leq n, the kk-connectivity κk(G)\kappa_k(G) of GG is the greatest positive integer rr for which GG contains at least rr internally disjoint trees connecting SS for any set SS of kk vertices of GG. Obviously, κ2(G)=κ(G)\kappa_2(G)=\kappa(G) is the connectivity of GG. Sabidussi showed that κ(G□H)≥κ(G)+κ(H)\kappa(G\Box H) \geq \kappa(G)+\kappa(H) for any two connected graphs GG and HH. In this paper, we first study the 3-connectivity of the Cartesian product of a graph GG and a tree TT, and show that (i)(i) if κ3(G)=κ(G)≥1\kappa_3(G)=\kappa(G)\geq 1, then κ3(G□T)≥κ3(G)\kappa_3(G\Box T)\geq \kappa_3(G); (ii)(ii) if 1≤κ3(G)<κ(G)1\leq \kappa_3(G)< \kappa(G), then κ3(G□T)≥κ3(G)+1\kappa_3(G\Box T)\geq \kappa_3(G)+1. Furthermore, for any two connected graphs GG and HH with κ3(G)≥κ3(H)\kappa_3(G)\geq\kappa_3(H), if κ(G)>κ3(G)\kappa(G)>\kappa_3(G), then κ3(G□H)≥κ3(G)+κ3(H)\kappa_3(G\Box H)\geq \kappa_3(G)+\kappa_3(H); if κ(G)=κ3(G)\kappa(G)=\kappa_3(G), then κ3(G□H)≥κ3(G)+κ3(H)−1\kappa_3(G\Box H)\geq \kappa_3(G)+\kappa_3(H)-1. Our result could be seen as a generalization of Sabidussi's result. Moreover, all the bounds are sharp.Comment: 17 page

    Some local--global phenomena in locally finite graphs

    Full text link
    In this paper we present some results for a connected infinite graph GG with finite degrees where the properties of balls of small radii guarantee the existence of some Hamiltonian and connectivity properties of GG. (For a vertex ww of a graph GG the ball of radius rr centered at ww is the subgraph of GG induced by the set Mr(w)M_r(w) of vertices whose distance from ww does not exceed rr). In particular, we prove that if every ball of radius 2 in GG is 2-connected and GG satisfies the condition dG(u)+dG(v)≥∣M2(w)∣−1d_G(u)+d_G(v)\geq |M_2(w)|-1 for each path uwvuwv in GG, where uu and vv are non-adjacent vertices, then GG has a Hamiltonian curve, introduced by K\"undgen, Li and Thomassen (2017). Furthermore, we prove that if every ball of radius 1 in GG satisfies Ore's condition (1960) then all balls of any radius in GG are Hamiltonian.Comment: 18 pages, 6 figures; journal accepted versio
    • …
    corecore