45 research outputs found

    Quasi-Polish Spaces

    Get PDF
    We investigate some basic descriptive set theory for countably based completely quasi-metrizable topological spaces, which we refer to as quasi-Polish spaces. These spaces naturally generalize much of the classical descriptive set theory of Polish spaces to the non-Hausdorff setting. We show that a subspace of a quasi-Polish space is quasi-Polish if and only if it is level \Pi_2 in the Borel hierarchy. Quasi-Polish spaces can be characterized within the framework of Type-2 Theory of Effectivity as precisely the countably based spaces that have an admissible representation with a Polish domain. They can also be characterized domain theoretically as precisely the spaces that are homeomorphic to the subspace of all non-compact elements of an \omega-continuous domain. Every countably based locally compact sober space is quasi-Polish, hence every \omega-continuous domain is quasi-Polish. A metrizable space is quasi-Polish if and only if it is Polish. We show that the Borel hierarchy on an uncountable quasi-Polish space does not collapse, and that the Hausdorff-Kuratowski theorem generalizes to all quasi-Polish spaces

    On the structure of finite level and \omega-decomposable Borel functions

    Full text link
    We give a full description of the structure under inclusion of all finite level Borel classes of functions, and provide an elementary proof of the well-known fact that not every Borel function can be written as a countable union of \Sigma^0_\alpha-measurable functions (for every fixed 1 \leq \alpha < \omega_1). Moreover, we present some results concerning those Borel functions which are \omega-decomposable into continuous functions (also called countably continuous functions in the literature): such results should be viewed as a contribution towards the goal of generalizing a remarkable theorem of Jayne and Rogers to all finite levels, and in fact they allow us to prove some restricted forms of such generalizations. We also analyze finite level Borel functions in terms of composition of simpler functions, and we finally present an application to Banach space theory.Comment: 31 pages, 2 figures, revised version, accepted for publication on the Journal of Symbolic Logi
    corecore