158 research outputs found

    Single system image: A survey

    Get PDF
    Single system image is a computing paradigm where a number of distributed computing resources are aggregated and presented via an interface that maintains the illusion of interaction with a single system. This approach encompasses decades of research using a broad variety of techniques at varying levels of abstraction, from custom hardware and distributed hypervisors to specialized operating system kernels and user-level tools. Existing classification schemes for SSI technologies are reviewed, and an updated classification scheme is proposed. A survey of implementation techniques is provided along with relevant examples. Notable deployments are examined and insights gained from hands-on experience are summarized. Issues affecting the adoption of kernel-level SSI are identified and discussed in the context of technology adoption literature

    Decentralized load balancing in heterogeneous computational grids

    Get PDF
    With the rapid development of high-speed wide-area networks and powerful yet low-cost computational resources, grid computing has emerged as an attractive computing paradigm. The space limitations of conventional distributed systems can thus be overcome, to fully exploit the resources of under-utilised computing resources in every region around the world for distributed jobs. Workload and resource management are key grid services at the service level of grid software infrastructure, where issues of load balancing represent a common concern for most grid infrastructure developers. Although these are established research areas in parallel and distributed computing, grid computing environments present a number of new challenges, including large-scale computing resources, heterogeneous computing power, the autonomy of organisations hosting the resources, uneven job-arrival pattern among grid sites, considerable job transfer costs, and considerable communication overhead involved in capturing the load information of sites. This dissertation focuses on designing solutions for load balancing in computational grids that can cater for the unique characteristics of grid computing environments. To explore the solution space, we conducted a survey for load balancing solutions, which enabled discussion and comparison of existing approaches, and the delimiting and exploration of the apportion of solution space. A system model was developed to study the load-balancing problems in computational grid environments. In particular, we developed three decentralised algorithms for job dispatching and load balancing—using only partial information: the desirability-aware load balancing algorithm (DA), the performance-driven desirability-aware load-balancing algorithm (P-DA), and the performance-driven region-based load-balancing algorithm (P-RB). All three are scalable, dynamic, decentralised and sender-initiated. We conducted extensive simulation studies to analyse the performance of our load-balancing algorithms. Simulation results showed that the algorithms significantly outperform preexisting decentralised algorithms that are relevant to this research

    CD/CV: Blockchain-based schemes for continuous verifiability and traceability of IoT data for edge-fog-cloud

    Get PDF
    This paper presents a continuous delivery/continuous verifiability (CD/CV) method for IoT dataflows in edge¿fog¿cloud. A CD model based on extraction, transformation, and load (ETL) mechanism as well as a directed acyclic graph (DAG) construction, enable end-users to create efficient schemes for the continuous verification and validation of the execution of applications in edge¿fog¿cloud infrastructures. This scheme also verifies and validates established execution sequences and the integrity of digital assets. CV model converts ETL and DAG into business model, smart contracts in a private blockchain for the automatic and transparent registration of transactions performed by each application in workflows/pipelines created by CD model without altering applications nor edge¿fog¿cloud workflows. This model ensures that IoT dataflows delivers verifiable information for organizations to conduct critical decision-making processes with certainty. A containerized parallelism model solves portability issues and reduces/compensates the overhead produced by CD/CV operations. We developed and implemented a prototype to create CD/CV schemes, which were evaluated in a case study where user mobility information is used to identify interest points, patterns, and maps. The experimental evaluation revealed the efficiency of CD/CV to register the transactions performed in IoT dataflows through edge¿fog¿cloud in a private blockchain network in comparison with state-of-art solutions.This work has been partially supported by the project “CABAHLA-CM: Convergencia Big data-Hpc: de los sensores a las Aplicaciones” S2018/TCS-4423 from Madrid Regional Government, Spain and by the Spanish Ministry of Science and Innovation Project “New Data Intensive Computing Methods for High-End and Edge Computing Platforms (DECIDE)”. Ref. PID2019-107858GB-I00; and by the project 41756 “Plataforma tecnológica para la gestión, aseguramiento, intercambio preservación de grandes volúmenes de datos en salud construcción de un repositorio nacional de servicios de análisis de datos de salud” by the PRONACES-CONACYT, Mexic

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks

    Full text link
    © 2013 IEEE. The past decade has witnessed the rapid evolution in blockchain technologies, which has attracted tremendous interests from both the research communities and industries. The blockchain network was originated from the Internet financial sector as a decentralized, immutable ledger system for transactional data ordering. Nowadays, it is envisioned as a powerful backbone/framework for decentralized data processing and data-driven self-organization in flat, open-access networks. In particular, the plausible characteristics of decentralization, immutability, and self-organization are primarily owing to the unique decentralized consensus mechanisms introduced by blockchain networks. This survey is motivated by the lack of a comprehensive literature review on the development of decentralized consensus mechanisms in blockchain networks. In this paper, we provide a systematic vision of the organization of blockchain networks. By emphasizing the unique characteristics of decentralized consensus in blockchain networks, our in-depth review of the state-of-the-art consensus protocols is focused on both the perspective of distributed consensus system design and the perspective of incentive mechanism design. From a game-theoretic point of view, we also provide a thorough review of the strategy adopted for self-organization by the individual nodes in the blockchain backbone networks. Consequently, we provide a comprehensive survey of the emerging applications of blockchain networks in a broad area of telecommunication. We highlight our special interest in how the consensus mechanisms impact these applications. Finally, we discuss several open issues in the protocol design for blockchain consensus and the related potential research directions
    corecore