30,627 research outputs found

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Toll Based Measures for Dynamical Graphs

    Get PDF
    Biological networks are one of the most studied object in computational biology. Several methods have been developed for studying qualitative properties of biological networks. Last decade had seen the improvement of molecular techniques that make quantitative analyses reachable. One of the major biological modelling goals is therefore to deal with the quantitative aspect of biological graphs. We propose a probabilistic model that suits with this quantitative aspects. Our model combines graph with several dynamical sources. It emphazises various asymptotic statistical properties that might be useful for giving biological insightsComment: 11 page

    Integrating heterogeneous knowledges for understanding biological behaviors: a probabilistic approach

    Get PDF
    Despite recent molecular technique improvements, biological knowledge remains incomplete. Reasoning on living systems hence implies to integrate heterogeneous and partial informations. Although current investigations successfully focus on qualitative behaviors of macromolecular networks, others approaches show partial quantitative informations like protein concentration variations over times. We consider that both informations, qualitative and quantitative, have to be combined into a modeling method to provide a better understanding of the biological system. We propose here such a method using a probabilistic-like approach. After its exhaustive description, we illustrate its advantages by modeling the carbon starvation response in Escherichia coli. In this purpose, we build an original qualitative model based on available observations. After the formal verification of its qualitative properties, the probabilistic model shows quantitative results corresponding to biological expectations which confirm the interest of our probabilistic approach.Comment: 10 page

    ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Get PDF
    Background: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, with the goal to gain a better understanding of the system. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. Although there exist sophisticated algorithms to determine the dynamics of discrete models, their implementations usually require labor-intensive formatting of the model formulation, and they are oftentimes not accessible to users without programming skills. Efficient analysis methods are needed that are accessible to modelers and easy to use. Method: By converting discrete models into algebraic models, tools from computational algebra can be used to analyze their dynamics. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Results: A method for efficiently identifying attractors, and the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness, i.e., while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes, and robustness, i.e., small number of attractors

    AND-NOT logic framework for steady state analysis of Boolean network models

    Full text link
    Finite dynamical systems (e.g. Boolean networks and logical models) have been used in modeling biological systems to focus attention on the qualitative features of the system, such as the wiring diagram. Since the analysis of such systems is hard, it is necessary to focus on subclasses that have the properties of being general enough for modeling and simple enough for theoretical analysis. In this paper we propose the class of AND-NOT networks for modeling biological systems and show that it provides several advantages. Some of the advantages include: Any finite dynamical system can be written as an AND-NOT network with similar dynamical properties. There is a one-to-one correspondence between AND-NOT networks, their wiring diagrams, and their dynamics. Results about AND-NOT networks can be stated at the wiring diagram level without losing any information. Results about AND-NOT networks are applicable to any Boolean network. We apply our results to a Boolean model of Th-cell differentiation
    • …
    corecore