1,021 research outputs found

    A relax-and-repair heuristic for the Swap-Body Vehicle Routing Problem

    Get PDF
    International audienceIn this paper we address the Swap-Body Vehicle Routing Problem, a variant of the Truck and Trailer Routing Problem. It was introduced in the VeRoLog Challenge 2014. We develop a solution approach that we coin Relax-and-Repair. It consists in solving a relaxed version of the SB-VRP and deriving a feasible solution by repairing the relaxed one. We embed this approach within a population-based heuristic. During computation we store all feasible routes in order to derive better solutions by solving a set-partitioning problem. In order to take advantages of nowadays multi-core machines, our algorithm is designed as a collaborative parallel population-based heuristic. Experimental results show that our relax-and-repair algorithm is very competitive and point the impact of each phase on the quality of the obtained solutions. The advantage of our approach is that it can be adapted to solve complex industrial routing problems

    Vehicle routing problems with drones equipped with multi-package payload compartments

    Get PDF
    The vehicle routing problem with drones (VRP-D) consists of designing combined truck-drone routes and schedules to serve a set of customers with specific requests and time constraints. In this paper, VRP-D is extended to include a fleet of drones equipped with multi-package payload compartments to serve more customers on a single trip. Moreover, a drone can return to a truck, different from the one from which it started, to swap its depleted battery and/or to pick up more packages. This problem, denoted as VRP-D equipped with multi-package payload compartments (VRP-D-MC), aims to maximize total profit. In this work, an adaptive multi-start simulated annealing (AMS-SA) metaheuristic algorithm is proposed to efficiently solve this problem. Experimental results show that the proposed algorithm outperforms the current state-of-the-art algorithms for VRP-D in terms of solution quality. Extensive analyses have been conducted to provide managerial insights. The analyses carried out show (i) the benefits of using drones equipped with different compartment configurations, (ii) the incremental total profit obtainable using a combined truck-drone fleet rather than a fleet of trucks, (iii) the benefit of swapping drone battery while picking up the items to deliver, and (iv) the impact of the packages load on the consumption energy of battery drone. It is also demonstrated that the different intensification and diversification mechanisms adopted improve the convergence of the traditional SA

    A Group Theoretic Tabu Search Methodology for Solving the Theater Distribution Vehicle Routing and Scheduling Problem

    Get PDF
    The application of Group Theory to Tabu Search is a new and exciting field of research. This dissertation applies and extends some of Colletti\u27s (1999) seminal work in group theory and metaheuristics in order to solve the theater distribution vehicle routing and scheduling problem (TDVRSP). This research produced a robust, efficient, effective and flexible generalized theater distribution model that prescribes the routing and scheduling of multi-modal theater transportation assets to provide economically efficient time definite delivery of cargo to customers. In doing so, advances are provided in the field of group theoretic tabu search and its application to difficult combinatorial optimization problems, e.g., the multiple trip multiple services vehicle routing and scheduling problem with hubs and other defining constraints

    A General Vehicle Routing Problem

    Get PDF
    In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications. The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem. Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with multiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles. The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement approaches based on the idea of changing the neighbourhood structure during the search

    The role of operational research in green freight transportation

    Get PDF
    Recent years have witnessed an increased awareness of the negative external impacts of freight transportation. The field of Operational Research (OR) has, particularly in the recent years, continued to contribute to alleviating the negative impacts through the use of various optimization models and solution techniques. This paper presents the basic principles behind and an overview of the existing body of recent research on ‘greening’ freight transportation using OR-based planning techniques. The particular focus is on studies that have been described for two heavily used modes for transporting freight across the globe, namely road (including urban and electric vehicles) and maritime transportation, although other modes are also briefly discussed

    Integrated zone picking and vehicle routing operations with restricted intermediate storage

    Get PDF
    The competitiveness of a retailer is highly dependent on an efficient distribution system. This is especially true for the supply of stores from distribution centers. Stores ask for high flexibility when it comes to their supply. This means that fast order processing is essential. Order processing affects different subsystems at the distribution center: Orders are picked in multiple picking zones, transferred to intermediate storage, and delivered via dedicated tours. These processing steps are highly interdependent. The schedule for picking needs to be synchronized with the routing decisions to ensure availability of the delivery orders at the DC’s loading docks when their associated tours are scheduled. Concurrently, intermediate storage represents a bottleneck as capacities for order storage are limited. The simultaneous planning of picking and routing operations with restricted intermediate storage is therefore relevant for retail practice but has not so far been considered within an integrated planning approach. Our work addresses this task and discusses an integrated zone picking and vehicle routing problem with restricted intermediate storage. We present a comprehensive model formulation and introduce a general variable neighborhood search for simultaneous consideration of the given planning stages. We also present two alternative sequential approaches that are motivated by the prevailing planning situation in industry. Numerical experiments that we have conducted show the need for an integrated planning approach to obtain practicable results. Further, we identify the impact of the main problem characteristics on the overall planning problem and provide valuable insights for the application of this approach in industry

    An Adaptive Iterated Local Search for the Mixed Capacitated General Routing Problem

    Get PDF
    We study the mixed capacitated general routing problem (MCGRP) in which a fleet of capacitated vehicles has to serve a set of requests by traversing a mixed weighted graph. The requests may be located on nodes, edges, and arcs. The problem has theoretical interest because it is a generalization of the capacitated vehicle routing problem (CVRP), the capacitated arc routing problem (CARP), and the general routing problem. It is also of great practical interest since it is often a more accurate model for real-world cases than its widely studied specializations, particularly for so-called street routing applications. Examples are urban waste collection, snow removal, and newspaper delivery. We propose a new iterated local search metaheuristic for the problem that also includes vital mechanisms from adaptive large neighborhood search combined with further intensification through local search. The method utilizes selected, tailored, and novel local search and large neighborhood search operators, as well as a new local search strategy. Computational experiments show that the proposed metaheuristic is highly effective on five published benchmarks for the MCGRP. The metaheuristic yields excellent results also on seven standard CARP data sets, and good results on four well-known CVRP benchmarks, including improvement of the best known upper bound for one instance

    Logic learning and optimized drawing: two hard combinatorial problems

    Get PDF
    Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures

    Towards an IT-based Planning Process Alignment: Integrated Route and Location Planning for Small Package Shippers

    Get PDF
    To increase the efficiency of delivery operations in small package shipping (SPS), numerous optimization models for routeand location planning decisions have been proposed. This operations research view of defining independent problems hastwo major shortcomings: First, most models from literature neglect crucial real-world characteristics, thus making themuseless for small package shippers. Second, business processes for strategic decision making are not well-structured in mostSPS companies and significant cost savings could be generated by an IT-based support infrastructure integrating decisionmaking and planning across the mutually dependent layers of strategic, tactical and operational planning. We present anintegrated planning framework that combines an intelligent data analysis tool, which identifies delivery patterns and changesin customer demand, with location and route planning tools. Our planning approaches extend standard Location Routing andVehicle Routing models by crucial, practically relevant characteristics like the existence of subcontractors on both decisionlevels and the implicit consideration of driver familiarity in route planning
    • …
    corecore