886 research outputs found

    Location and resource management for quality of service provisioning in wireless/mobile networks

    Full text link
    Wireless communication has been seen unprecedented growth in recent years. As the wireless network migrates from 2G to 2.5G and 3G, more and more high-bandwidth services have to be provided to wireless users. However, existing radio resources are limited, thus quality-of-service (QoS) provisioning is extremely important for high performance networKing In this dissertation, we focus on two problems crucial for QoS provisioning in wireless networks. They are location and resource management. Our research is aimed to develop efficient location management and resource allocation techniques to provide qualitative services in the future generations of wireless/mobile networks. First, the hybrid location update method (HLU) is proposed based on both the moving distance and the moving direction of mobile terminals. The signaling cost for location management is analyzed using a 2D Markov walk model. The results of numerical studies for different mobility patterns show that the HLU scheme outperforms the methods employing either moving distance or moving direction. Next, a new dynamic location management scheme with personalized location areas is developed. It takes into account terminal\u27s mobility characteristics in different locations of the service area. The location area is designed for each individual mobile user such that the location management cost is minimized. The cost is calculated based on a continuous-time Markov chain. Simulation results acknowledge a lower cost of the proposed scheme compared to that of some known techniques. Our research on the resource management considers the dynamic allocation strategy in the integrated voice/data wireless networks. We propose two new channel de-allocation schemes, i.e., de-allocation for data packet (DASP) and de-allocation for both voice call and data packet (DASVP). We then combine the proposed de-allocation methods with channel re-allocation, and evaluate the performance of the schemes using an analytic model. The results indicate the necessity of adapting to QoS requirements on both voice call and data packet. Finally, a new QoS-based dynamic resource allocation scheme is proposed which differentiates the new and handoff voice calls. The scheme combines channel reservation, channel de-allocation/re-allocation for voice call and packet queue to adapt to QoS requirements by adjusting the number of reserved channels and packet queue size. The superiority of the propose scheme in meeting the QoS requirements over existing techniques is proved by the experimental studies

    Performability: a retrospective and some pointers to the future

    Full text link
    As computing and communication systems become physically and logically more complex, their evaluation calls for continued innovation with regard to measure definition, model construction/solution, and tool development. In particular, the performance of such systems is often degradable, i.e., internal or external faults can reduce the quality of a delivered service even though that service, according to its specification, remains proper (failure-free). The need to accommodate this property, using model-based evaluation methods, was the raison d'etre for the concept of performability. To set the stage for additional progress in its development, we present a retrospective of associated theory, techniques, and applications resulting from work in this area over the past decade and a half. Based on what has been learned, some pointers are made to future directions which might further enhance the effectiveness of these methods and broaden their scope of applicability.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30223/1/0000615.pd

    Performability Evaluation of Gracefully Degradable Systems

    Get PDF

    Loss systems in a random environment

    Full text link
    We consider a single server system with infinite waiting room in a random environment. The service system and the environment interact in both directions. Whenever the environment enters a prespecified subset of its state space the service process is completely blocked: Service is interrupted and newly arriving customers are lost. We prove an if-and-only-if-condition for a product form steady state distribution of the joint queueing-environment process. A consequence is a strong insensitivity property for such systems. We discuss several applications, e.g. from inventory theory and reliability theory, and show that our result extends and generalizes several theorems found in the literature, e.g. of queueing-inventory processes. We investigate further classical loss systems, where due to finite waiting room loss of customers occurs. In connection with loss of customers due to blocking by the environment and service interruptions new phenomena arise. We further investigate the embedded Markov chains at departure epochs and show that the behaviour of the embedded Markov chain is often considerably different from that of the continuous time Markov process. This is different from the behaviour of the standard M/G/1, where the steady state of the embedded Markov chain and the continuous time process coincide. For exponential queueing systems we show that there is a product form equilibrium of the embedded Markov chain under rather general conditions. For systems with non-exponential service times more restrictive constraints are needed, which we prove by a counter example where the environment represents an inventory attached to an M/D/1 queue. Such integrated queueing-inventory systems are dealt with in the literature previously, and are revisited here in detail

    Modeling the Effect of Bandwidth Allocation on Network Performance

    Get PDF
    In this paper, a new channel capacity model for interferencelimited systems was obtained by transforming the Shannon-Hartley theorem for channel capacity. To emulate an operational system, a dashboard Motorola monitoring device was used to collect data from a group of Base Stations (BSs) serving (a section of) the Nigerian air space and belonging to one of the existing network carriers. Our findings revealed that the uplink and downlink throughputs of the existing system were not impressive even when there was uniform sharing of bottlenecks across the BSs. Using MATLAB, simulations were then performed by extending these data, subject to ideal environmental constraints. Results obtained revealed the following: (i) The Shannon-Hartley model performed as expected for no-interference systems (TDMA and FDMA), but as the bandwidth improved, only limited number of users could access the network in the presence of increased SNR; (ii) The proposed model showed improved performance for CDMA networks, but further increase in the bandwidth did not benefit the network; (iii) A reliability measure such as the spectral efficiency is therefore useful to redeem the limitation in (ii).Keywords: Coverage Capacity, CDMA, Mobile Network, Network Throughpu

    A formalism for describing and simulating systems with interacting components.

    Get PDF
    This thesis addresses the problem of descriptive complexity presented by systems involving a high number of interacting components. It investigates the evaluation measure of performability and its application to such systems. A new description and simulation language, ICE and it's application to performability modelling is presented. ICE (Interacting ComponEnts) is based upon an earlier description language which was first proposed for defining reliability problems. ICE is declarative in style and has a limited number of keywords. The ethos in the development of the language has been to provide an intuitive formalism with a powerful descriptive space. The full syntax of the language is presented with discussion as to its philosophy. The implementation of a discrete event simulator using an ICE interface is described, with use being made of examples to illustrate the functionality of the code and the semantics of the language. Random numbers are used to provide the required stochastic behaviour within the simulator. The behaviour of an industry standard generator within the simulator and different methods of number allocation are shown. A new generator is proposed that is a development of a fast hardware shift register generator and is demonstrated to possess good statistical properties and operational speed. For the purpose of providing a rigorous description of the language and clarification of its semantics, a computational model is developed using the formalism of extended coloured Petri nets. This model also gives an indication of the language's descriptive power relative to that of a recognised and well developed technique. Some recognised temporal and structural problems of system event modelling are identified. and ICE solutions given. The growing research area of ATM communication networks is introduced and a sophisticated top down model of an ATM switch presented. This model is simulated and interesting results are given. A generic ICE framework for performability modelling is developed and demonstrated. This is considered as a positive contribution to the general field of performability research

    Modelling and performability evaluation of Wireless Sensor Networks

    Get PDF
    This thesis presents generic analytical models of homogeneous clustered Wireless Sensor Networks (WSNs) with a centrally located Cluster Head (CH) coordinating cluster communication with the sink directly or through other intermediate nodes. The focus is to integrate performance and availability studies of WSNs in the presence of sensor nodes and channel failures and repair/replacement. The main purpose is to enhance improvement of WSN Quality of Service (QoS). Other research works also considered in this thesis include modelling of packet arrival distribution at the CH and intermediate nodes, and modelling of energy consumption at the sensor nodes. An investigation and critical analysis of wireless sensor network architectures, energy conservation techniques and QoS requirements are performed in order to improve performance and availability of the network. Existing techniques used for performance evaluation of single and multi-server systems with several operative states are investigated and analysed in details. To begin with, existing approaches for independent (pure) performance modelling are critically analysed with highlights on merits and drawbacks. Similarly, pure availability modelling approaches are also analysed. Considering that pure performance models tend to be too optimistic and pure availability models are too conservative, performability, which is the integration of performance and availability studies is used for the evaluation of the WSN models developed in this study. Two-dimensional Markov state space representations of the systems are used for performability modelling. Following critical analysis of the existing solution techniques, spectral expansion method and system of simultaneous linear equations are developed and used to solving the proposed models. To validate the results obtained with the two techniques, a discrete event simulation tool is explored. In this research, open queuing networks are used to model the behaviour of the CH when subjected to streams of traffic from cluster nodes in addition to dynamics of operating in the various states. The research begins with a model of a CH with an infinite queue capacity subject to failures and repair/replacement. The model is developed progressively to consider bounded queue capacity systems, channel failures and sleep scheduling mechanisms for performability evaluation of WSNs. Using the developed models, various performance measures of the considered system including mean queue length, throughput, response time and blocking probability are evaluated. Finally, energy models considering mean power consumption in each of the possible operative states is developed. The resulting models are in turn employed for the evaluation of energy saving for the proposed case study model. Numerical solutions and discussions are presented for all the queuing models developed. Simulation is also performed in order to validate the accuracy of the results obtained. In order to address issues of performance and availability of WSNs, current research present independent performance and availability studies. The concerns resulting from such studies have therefore remained unresolved over the years hence persistence poor system performance. The novelty of this research is a proposed integrated performance and availability modelling approach for WSNs meant to address challenges of independent studies. In addition, a novel methodology for modelling and evaluation of power consumption is also offered. Proposed model results provide remarkable improvement on system performance and availability in addition to providing tools for further optimisation studies. A significant power saving is also observed from the proposed model results. In order to improve QoS for WSN, it is possible to improve the proposed models by incorporating priority queuing in a mixed traffic environment. A model of multi-server system is also appropriate for addressing traffic routing. It is also possible to extend the proposed energy model to consider other sleep scheduling mechanisms other than On-demand proposed herein. Analysis and classification of possible arrival distribution of WSN packets for various application environments would be a great idea for enabling robust scientific research
    corecore