81 research outputs found

    A novel algorithm with IM-LSI index for incremental maintenance of materialized view

    Get PDF
    The ability to afford decision makers with both accurate and timely consolidated information as well as rapid query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its contents consistent with the contents of its data sources. Incremental maintenance is generally regarded as a more efficient way to maintain materialized views in a data warehouse The view has to be maintained to reflect the updates done against the base relations stored at the various distributed data sources. The proposed approach contains two modules namely, materialized view selection(MVS) and maintenance of materialized view. (MMV). In recent times, several algorithms have been proposed for keeping the views up-to-date in response to the changes in the source data. Therefore, we present an improved algorithm for MVS and MMV using IM-LSI(Itemset Mining using Latent Semantic Index) algorithm. selection of views to materialize using the IM(Itemset Mining) algorithm method to overcome the problem resulting from conventional view selection algorithms and then we consider the maintenance of materialized views using LSI. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs better than conventional algorithms.Facultad de Informátic

    Improving Efficiency of Incremental Mining by Trie Structure and Pre-Large Itemsets

    Get PDF
    Incremental data mining has been discussed widely in recent years, as it has many practical applications, and various incremental mining algorithms have been proposed. Hong et al. proposed an efficient incremental mining algorithm for handling newly inserted transactions by using the concept of pre-large itemsets. The algorithm aimed to reduce the need to rescan the original database and also cut maintenance costs. Recently, Lin et al. proposed the Pre-FUFP algorithm to handle new transactions more efficiently, and make it easier to update the FP-tree. However, frequent itemsets must be mined from the FP-growth algorithm. In this paper, we propose a Pre-FUT algorithm (Fast-Update algorithm using the Trie data structure and the concept of pre-large itemsets), which not only builds and updates the trie structure when new transactions are inserted, but also mines all the frequent itemsets easily from the tree. Experimental results show the good performance of the proposed algorithm

    Knowledge Discovery Process in the Image-Segmentation Data

    Get PDF
    This paper discusses in detail the behavior of the different classification on image segmentation data. The result predicts the different aspects of the classification model. It is found that NNEG is the best classifier with accuracy of 96.2771%. ROC|max and ROC|min are computed for different classes and are found to be interesting
    • …
    corecore