13,830 research outputs found

    Efficient Approaches for Enclosing the United Solution Set of the Interval Generalized Sylvester Matrix Equation

    Full text link
    In this work, we investigate the interval generalized Sylvester matrix equation AXB+CXD=F{\bf{A}}X{\bf{B}}+{\bf{C}}X{\bf{D}}={\bf{F}} and develop some techniques for obtaining outer estimations for the so-called united solution set of this interval system. First, we propose a modified variant of the Krawczyk operator which causes reducing computational complexity to cubic, compared to Kronecker product form. We then propose an iterative technique for enclosing the solution set. These approaches are based on spectral decompositions of the midpoints of A{\bf{A}}, B{\bf{B}}, C{\bf{C}} and D{\bf{D}} and in both of them we suppose that the midpoints of A{\bf{A}} and C{\bf{C}} are simultaneously diagonalizable as well as for the midpoints of the matrices B{\bf{B}} and D{\bf{D}}. Some numerical experiments are given to illustrate the performance of the proposed methods

    Self-similar Singularity of a 1D Model for the 3D Axisymmetric Euler Equations

    Get PDF
    We investigate the self-similar singularity of a 1D model for the 3D axisymmetric Euler equations, which is motivated by a particular singularity formation scenario observed in numerical computation. We prove the existence of a discrete family of self-similar profiles for this model and analyze their far-field properties. The self-similar profiles we find agree with direct simulation of the model and seem to have some stability

    Subsquares Approach - Simple Scheme for Solving Overdetermined Interval Linear Systems

    Full text link
    In this work we present a new simple but efficient scheme - Subsquares approach - for development of algorithms for enclosing the solution set of overdetermined interval linear systems. We are going to show two algorithms based on this scheme and discuss their features. We start with a simple algorithm as a motivation, then we continue with a sequential algorithm. Both algorithms can be easily parallelized. The features of both algorithms will be discussed and numerically tested.Comment: submitted to PPAM 201

    Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

    Get PDF
    Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build asymptotically exact confidence regions and confidence intervals for the solution of the normal map formulation, based on the asymptotic distribution of SAA solutions. The confidence regions are single ellipsoids with high probability. We also discuss the computation of simultaneous and individual confidence intervals

    Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing - a computer assisted proof

    Full text link
    We prove the existence of globally attracting solutions of the viscous Burgers equation with periodic boundary conditions on the line for some particular choices of viscosity and non-autonomous forcing. The attract- ing solution is periodic if the forcing is periodic. The method is general and can be applied to other similar partial differential equations. The proof is computer assisted.Comment: 38 pages, 1 figur

    Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof

    Full text link
    We present a computer assisted method for proving the existence of globally attracting fixed points of dissipative PDEs. An application to the viscous Burgers equation with periodic boundary conditions and a forcing function constant in time is presented as a case study. We establish the existence of a locally attracting fixed point by using rigorous numerics techniques. To prove that the fixed point is, in fact, globally attracting we introduce a technique relying on a construction of an absorbing set, capturing any sufficiently regular initial condition after a finite time. Then the absorbing set is rigorously integrated forward in time to verify that any sufficiently regular initial condition is in the basin of attraction of the fixed point.Comment: To appear in Topological Methods in Nonlinear Analysis, 201
    corecore