21 research outputs found

    Unsupervised Online Adaptation of Segmental Switching Linear Gaussian Hidden Markov Models for Robust Speech Recognition

    Get PDF
    In our previous works, a Segmental Switching Linear Gaussian Hidden Markov Model (SSLGHMM) was proposed to model 'noisy' speech utterance for robust speech recognition. Both ML (maximum likelihood) and MCE (minimum classification error) training procedures were developed for training model parameters and their effectiveness was confirmed by evaluation experiments on Aurora2 and Aurora3 databases. In this paper, we present an ML approach to unsupervised online adaptation (OLA) of SSLGHMM parameters for achieving further performance improvement. An important implementation issue of how to initialize the switching linear Gaussian model parameters is also studied. Evaluation results on Finnish Aurora3 database show that in comparison with the performance of a baseline system based on ML-trained SSLGHMMs, unsupervised OLA yields a relative word error rate reduction of 4.3%, 9.1%, and 17.8% for well-matched, medium-mismatched, and high-mismatched conditions respectively.published_or_final_versio

    Segment phoneme classification from speech under noisy conditions: Using amplitude-frequency modulation based two-dimensional auto-regressive features with deep neural networks

    Get PDF
    This thesis investigates at the acoustic-phonetic level the noise robustness of features derived using the AM-FM analysis of speech signals. The analysis on the noise robustness of these features is done using various neural network models and is based on the segment classification of phonemes. This analysis is also extended and the robustness of the AM-FM based features is compared under similar noise conditions with the traditional features such as the Mel-frequency cepstral coefficients(MFCC). We begin with an important aspect of segment phoneme classification experiments which is the study of architectural and training strategies of the various neural network models used. The results of these experiments showed that there is a difference in the training pattern adopted by the various neural network models. Before over-fitting, models that undergo pre-training are seen to train for many epochs more than their opposite models that do not undergo pre-training. Taking this difference in training pattern into perspective and based on phoneme classification rate the Gaussian restricted Boltzmann machine and the single layer perceptron are selected as the best performing model of the two groups, respectively. Using the two best performing models for classification, segment phoneme classification experiments under different noise conditions are performed for both the AM-FM based and traditional features. The experiments showed that AM-FM based frequency domain linear prediction features with or without feature compensation are more robust in the classification of 61 phonemes under white noise and 0 dBdB signal-to-noise ratio(SNR) conditions compared to the traditional features. However, when the phonemes are folded to 39 phonemes, the results are ambiguous under all noise conditions and there is no unanimous conclusion as to which feature is most robust

    Exploration and Optimization of Noise Reduction Algorithms for Speech Recognition in Embedded Devices

    Get PDF
    Environmental noise present in real-life applications substantially degrades the performance of speech recognition systems. An example is an in-car scenario where a speech recognition system has to support the man-machine interface. Several sources of noise coming from the engine, wipers, wheels etc., interact with speech. Special challenge is given in an open window scenario, where noise of traffic, park noise, etc., has to be regarded. The main goal of this thesis is to improve the performance of a speech recognition system based on a state-of-the-art hidden Markov model (HMM) using noise reduction methods. The performance is measured with respect to word error rate and with the method of mutual information. The noise reduction methods are based on weighting rules. Least-squares weighting rules in the frequency domain have been developed to enable a continuous development based on the existing system and also to guarantee its low complexity and footprint for applications in embedded devices. The weighting rule parameters are optimized employing a multidimensional optimization task method of Monte Carlo followed by a compass search method. Root compression and cepstral smoothing methods have also been implemented to boost the recognition performance. The additional complexity and memory requirements of the proposed system are minimum. The performance of the proposed system was compared to the European Telecommunications Standards Institute (ETSI) standardized system. The proposed system outperforms the ETSI system by up to 8.6 % relative increase in word accuracy and achieves up to 35.1 % relative increase in word accuracy compared to the existing baseline system on the ETSI Aurora 3 German task. A relative increase of up to 18 % in word accuracy over the existing baseline system is also obtained from the proposed weighting rules on large vocabulary databases. An entropy-based feature vector analysis method has also been developed to assess the quality of feature vectors. The entropy estimation is based on the histogram approach. The method has the advantage to objectively asses the feature vector quality regardless of the acoustic modeling assumption used in the speech recognition system

    Morphologically filtered power-normalized cochleograms as robust, biologically inspired features for ASR

    Get PDF
    In this paper, we present advances in the modeling of the masking behavior of the human auditory system (HAS) to enhance the robustness of the feature extraction stage in automatic speech recognition (ASR). The solution adopted is based on a nonlinear filtering of a spectro-temporal representation applied simultaneously to both frequency and time domains-as if it were an image-using mathematical morphology operations. A particularly important component of this architecture is the so-called structuring element (SE) that in the present contribution is designed as a single three-dimensional pattern using physiological facts, in such a way that closely resembles the masking phenomena taking place in the cochlea. A proper choice of spectro-temporal representation lends validity to the model throughout the whole frequency spectrum and intensity spans assuming the variability of the masking properties of the HAS in these two domains. The best results were achieved with the representation introduced as part of the power normalized cepstral coefficients (PNCC) together with a spectral subtraction step. This method has been tested on Aurora 2, Wall Street Journal and ISOLET databases including both classical hidden Markov model (HMM) and hybrid artificial neural networks (ANN)-HMM back-ends. In these, the proposed front-end analysis provides substantial and significant improvements compared to baseline techniques: up to 39.5% relative improvement compared to MFCC, and 18.7% compared to PNCC in the Aurora 2 database.This contribution has been supported by an Airbus Defense and Space Grant (Open Innovation - SAVIER) and Spanish Government-CICYT projects TEC2014-53390-P and TEC2014-61729-EX

    Speech Enhancement for Automatic Analysis of Child-Centered Audio Recordings

    Get PDF
    Analysis of child-centred daylong naturalist audio recordings has become a de-facto research protocol in the scientific study of child language development. The researchers are increasingly using these recordings to understand linguistic environment a child encounters in her routine interactions with the world. These audio recordings are captured by a microphone that a child wears throughout a day. The audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday life which degrades the performance of speech analysis tasks. The purpose of this thesis is to investigate the utility of speech enhancement (SE) algorithms in the automatic analysis of such recordings. To this effect, several classical signal processing and modern machine learning-based SE methods were employed 1) as a denoiser for speech corrupted with additive noise sampled from real-life child-centred daylong recordings and 2) as front-end for downstream speech processing tasks of addressee classification (infant vs. adult-directed speech) and automatic syllable count estimation from the speech. The downstream tasks were conducted on data derived from a set of geographically, culturally, and linguistically diverse child-centred daylong audio recordings. The performance of denoising was evaluated through objective quality metrics (spectral distortion and instrumental intelligibility) and through the downstream task performance. Finally, the objective evaluation results were compared with downstream task performance results to find whether objective metrics can be used as a reasonable proxy to select SE front-end for a downstream task. The results obtained show that a recently proposed Long Short-Term Memory (LSTM)-based progressive learning architecture provides maximum performance gains in the downstream tasks in comparison with the other SE methods and baseline results. Classical signal processing-based SE methods also lead to competitive performance. From the comparison of objective assessment and downstream task performance results, no predictive relationship between task-independent objective metrics and performance of downstream tasks was found

    Synergy of Acoustic-Phonetics and Auditory Modeling Towards Robust Speech Recognition

    Get PDF
    The problem addressed in this work is that of enhancing speech signals corrupted by additive noise and improving the performance of automatic speech recognizers in noisy conditions. The enhanced speech signals can also improve the intelligibility of speech in noisy conditions for human listeners with hearing impairment as well as for normal listeners. The original Phase Opponency (PO) model, proposed to detect tones in noise, simulates the processing of the information in neural discharge times and exploits the frequency-dependent phase properties of the tuned filters in the auditory periphery along with the cross-auditory-nerve-fiber coincidence detection to extract temporal cues. The Modified Phase Opponency (MPO) proposed here alters the components of the PO model in such a way that the basic functionality of the PO model is maintained but the various properties of the model can be analyzed and modified independently of each other. This work presents a detailed mathematical formulation of the MPO model and the relation between the properties of the narrowband signal that needs to be detected and the properties of the MPO model. The MPO speech enhancement scheme is based on the premise that speech signals are composed of a combination of narrow band signals (i.e. harmonics) with varying amplitudes. The MPO enhancement scheme outperforms many of the other speech enhancement techniques when evaluated using different objective quality measures. Automatic speech recognition experiments show that replacing noisy speech signals by the corresponding MPO-enhanced speech signals leads to an improvement in the recognition accuracies at low SNRs. The amount of improvement varies with the type of the corrupting noise. Perceptual experiments indicate that: (a) there is little perceptual difference in the MPO-processed clean speech signals and the corresponding original clean signals and (b) the MPO-enhanced speech signals are preferred over the output of the other enhancement methods when the speech signals are corrupted by subway noise but the outputs of the other enhancement schemes are preferred when the speech signals are corrupted by car noise

    Robust speech recognition under band-limited channels and other channel distortions

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, junio de 200

    Statistical models for noise-robust speech recognition

    Get PDF
    A standard way of improving the robustness of speech recognition systems to noise is model compensation. This replaces a speech recogniser's distributions over clean speech by ones over noise-corrupted speech. For each clean speech component, model compensation techniques usually approximate the corrupted speech distribution with a diagonal-covariance Gaussian distribution. This thesis looks into improving on this approximation in two ways: firstly, by estimating full-covariance Gaussian distributions; secondly, by approximating corrupted-speech likelihoods without any parameterised distribution. The first part of this work is about compensating for within-component feature correlations under noise. For this, the covariance matrices of the computed Gaussians should be full instead of diagonal. The estimation of off-diagonal covariance elements turns out to be sensitive to approximations. A popular approximation is the one that state-of-the-art compensation schemes, like VTS compensation, use for dynamic coefficients: the continuous-time approximation. Standard speech recognisers contain both per-time slice, static, coefficients, and dynamic coefficients, which represent signal changes over time, and are normally computed from a window of static coefficients. To remove the need for the continuous-time approximation, this thesis introduces a new technique. It first compensates a distribution over the window of statics, and then applies the same linear projection that extracts dynamic coefficients. It introduces a number of methods that address the correlation changes that occur in noise within this framework. The next problem is decoding speed with full covariances. This thesis re-analyses the previously-introduced predictive linear transformations, and shows how they can model feature correlations at low and tunable computational cost. The second part of this work removes the Gaussian assumption completely. It introduces a sampling method that, given speech and noise distributions and a mismatch function, in the limit calculates the corrupted speech likelihood exactly. For this, it transforms the integral in the likelihood expression, and then applies sequential importance resampling. Though it is too slow to use for recognition, it enables a more fine-grained assessment of compensation techniques, based on the KL divergence to the ideal compensation for one component. The KL divergence proves to predict the word error rate well. This technique also makes it possible to evaluate the impact of approximations that standard compensation schemes make.This work was supported by Toshiba Research Europe Ltd., Cambridge Research Laboratory
    corecore