26,594 research outputs found

    Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels

    Full text link
    Graph Convolutional Networks(GCNs) play a crucial role in graph learning tasks, however, learning graph embedding with few supervised signals is still a difficult problem. In this paper, we propose a novel training algorithm for Graph Convolutional Network, called Multi-Stage Self-Supervised(M3S) Training Algorithm, combined with self-supervised learning approach, focusing on improving the generalization performance of GCNs on graphs with few labeled nodes. Firstly, a Multi-Stage Training Framework is provided as the basis of M3S training method. Then we leverage DeepCluster technique, a popular form of self-supervised learning, and design corresponding aligning mechanism on the embedding space to refine the Multi-Stage Training Framework, resulting in M3S Training Algorithm. Finally, extensive experimental results verify the superior performance of our algorithm on graphs with few labeled nodes under different label rates compared with other state-of-the-art approaches.Comment: AAAI Conference on Artificial Intelligence (AAAI 2020

    Attention-based Graph Neural Network for Semi-supervised Learning

    Full text link
    Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that a linear model, that removes all the intermediate fully-connected layers, is still able to achieve a performance comparable to the state-of-the-art models. This significantly reduces the number of parameters, which is critical for semi-supervised learning where number of labeled examples are small. This in turn allows a room for designing more innovative propagation layers. Based on this insight, we propose a novel graph neural network that removes all the intermediate fully-connected layers, and replaces the propagation layers with attention mechanisms that respect the structure of the graph. The attention mechanism allows us to learn a dynamic and adaptive local summary of the neighborhood to achieve more accurate predictions. In a number of experiments on benchmark citation networks datasets, we demonstrate that our approach outperforms competing methods. By examining the attention weights among neighbors, we show that our model provides some interesting insights on how neighbors influence each other

    GESF: A Universal Discriminative Mapping Mechanism for Graph Representation Learning

    Full text link
    Graph embedding is a central problem in social network analysis and many other applications, aiming to learn the vector representation for each node. While most existing approaches need to specify the neighborhood and the dependence form to the neighborhood, which may significantly degrades the flexibility of representation, we propose a novel graph node embedding method (namely GESF) via the set function technique. Our method can 1) learn an arbitrary form of representation function from neighborhood, 2) automatically decide the significance of neighbors at different distances, and 3) be applied to heterogeneous graph embedding, which may contain multiple types of nodes. Theoretical guarantee for the representation capability of our method has been proved for general homogeneous and heterogeneous graphs and evaluation results on benchmark data sets show that the proposed GESF outperforms the state-of-the-art approaches on producing node vectors for classification tasks.Comment: 18 page

    A Survey on Data Collection for Machine Learning: a Big Data -- AI Integration Perspective

    Full text link
    Data collection is a major bottleneck in machine learning and an active research topic in multiple communities. There are largely two reasons data collection has recently become a critical issue. First, as machine learning is becoming more widely-used, we are seeing new applications that do not necessarily have enough labeled data. Second, unlike traditional machine learning, deep learning techniques automatically generate features, which saves feature engineering costs, but in return may require larger amounts of labeled data. Interestingly, recent research in data collection comes not only from the machine learning, natural language, and computer vision communities, but also from the data management community due to the importance of handling large amounts of data. In this survey, we perform a comprehensive study of data collection from a data management point of view. Data collection largely consists of data acquisition, data labeling, and improvement of existing data or models. We provide a research landscape of these operations, provide guidelines on which technique to use when, and identify interesting research challenges. The integration of machine learning and data management for data collection is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research.Comment: 20 page

    Semi-Supervised Learning with Competitive Infection Models

    Full text link
    The goal in semi-supervised learning is to effectively combine labeled and unlabeled data. One way to do this is by encouraging smoothness across edges in a graph whose nodes correspond to input examples. In many graph-based methods, labels can be thought of as propagating over the graph, where the underlying propagation mechanism is based on random walks or on averaging dynamics. While theoretically elegant, these dynamics suffer from several drawbacks which can hurt predictive performance. Our goal in this work is to explore alternative mechanisms for propagating labels. In particular, we propose a method based on dynamic infection processes, where unlabeled nodes can be "infected" with the label of their already infected neighbors. Our algorithm is efficient and scalable, and an analysis of the underlying optimization objective reveals a surprising relation to other Laplacian approaches. We conclude with a thorough set of experiments across multiple benchmarks and various learning settings

    Robust Graph Data Learning via Latent Graph Convolutional Representation

    Full text link
    Graph Convolutional Representation (GCR) has achieved impressive performance for graph data representation. However, existing GCR is generally defined on the input fixed graph which may restrict the representation capacity and also be vulnerable to the structural attacks and noises. To address this issue, we propose a novel Latent Graph Convolutional Representation (LatGCR) for robust graph data representation and learning. Our LatGCR is derived based on reformulating graph convolutional representation from the aspect of graph neighborhood reconstruction. Given an input graph A\textbf{A}, LatGCR aims to generate a flexible latent graph A~\widetilde{\textbf{A}} for graph convolutional representation which obviously enhances the representation capacity and also performs robustly w.r.t graph structural attacks and noises. Moreover, LatGCR is implemented in a self-supervised manner and thus provides a basic block for both supervised and unsupervised graph learning tasks. Experiments on several datasets demonstrate the effectiveness and robustness of LatGCR

    GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models

    Full text link
    Modern data analysis pipelines are becoming increasingly complex due to the presence of multi-view information sources. While graphs are effective in modeling complex relationships, in many scenarios a single graph is rarely sufficient to succinctly represent all interactions, and hence multi-layered graphs have become popular. Though this leads to richer representations, extending solutions from the single-graph case is not straightforward. Consequently, there is a strong need for novel solutions to solve classical problems, such as node classification, in the multi-layered case. In this paper, we consider the problem of semi-supervised learning with multi-layered graphs. Though deep network embeddings, e.g. DeepWalk, are widely adopted for community discovery, we argue that feature learning with random node attributes, using graph neural networks, can be more effective. To this end, we propose to use attention models for effective feature learning, and develop two novel architectures, GrAMME-SG and GrAMME-Fusion, that exploit the inter-layer dependencies for building multi-layered graph embeddings. Using empirical studies on several benchmark datasets, we evaluate the proposed approaches and demonstrate significant performance improvements in comparison to state-of-the-art network embedding strategies. The results also show that using simple random features is an effective choice, even in cases where explicit node attributes are not available

    Relation Extraction : A Survey

    Full text link
    With the advent of the Internet, large amount of digital text is generated everyday in the form of news articles, research publications, blogs, question answering forums and social media. It is important to develop techniques for extracting information automatically from these documents, as lot of important information is hidden within them. This extracted information can be used to improve access and management of knowledge hidden in large text corpora. Several applications such as Question Answering, Information Retrieval would benefit from this information. Entities like persons and organizations, form the most basic unit of the information. Occurrences of entities in a sentence are often linked through well-defined relations; e.g., occurrences of person and organization in a sentence may be linked through relations such as employed at. The task of Relation Extraction (RE) is to identify such relations automatically. In this paper, we survey several important supervised, semi-supervised and unsupervised RE techniques. We also cover the paradigms of Open Information Extraction (OIE) and Distant Supervision. Finally, we describe some of the recent trends in the RE techniques and possible future research directions. This survey would be useful for three kinds of readers - i) Newcomers in the field who want to quickly learn about RE; ii) Researchers who want to know how the various RE techniques evolved over time and what are possible future research directions and iii) Practitioners who just need to know which RE technique works best in various settings

    Regression-based Hypergraph Learning for Image Clustering and Classification

    Full text link
    Inspired by the recently remarkable successes of Sparse Representation (SR), Collaborative Representation (CR) and sparse graph, we present a novel hypergraph model named Regression-based Hypergraph (RH) which utilizes the regression models to construct the high quality hypergraphs. Moreover, we plug RH into two conventional hypergraph learning frameworks, namely hypergraph spectral clustering and hypergraph transduction, to present Regression-based Hypergraph Spectral Clustering (RHSC) and Regression-based Hypergraph Transduction (RHT) models for addressing the image clustering and classification issues. Sparse Representation and Collaborative Representation are employed to instantiate two RH instances and their RHSC and RHT algorithms. The experimental results on six popular image databases demonstrate that the proposed RH learning algorithms achieve promising image clustering and classification performances, and also validate that RH can inherit the desirable properties from both hypergraph models and regression models.Comment: 11page

    An Optimization Framework for Semi-Supervised and Transfer Learning using Multiple Classifiers and Clusterers

    Full text link
    Unsupervised models can provide supplementary soft constraints to help classify new, "target" data since similar instances in the target set are more likely to share the same class label. Such models can also help detect possible differences between training and target distributions, which is useful in applications where concept drift may take place, as in transfer learning settings. This paper describes a general optimization framework that takes as input class membership estimates from existing classifiers learnt on previously encountered "source" data, as well as a similarity matrix from a cluster ensemble operating solely on the target data to be classified, and yields a consensus labeling of the target data. This framework admits a wide range of loss functions and classification/clustering methods. It exploits properties of Bregman divergences in conjunction with Legendre duality to yield a principled and scalable approach. A variety of experiments show that the proposed framework can yield results substantially superior to those provided by popular transductive learning techniques or by naively applying classifiers learnt on the original task to the target data
    • …
    corecore