39 research outputs found

    Generic Feature Learning for Wireless Capsule Endoscopy Analysis

    Full text link
    The interpretation and analysis of wireless capsule endoscopy (WCE) recordings is a complex task which requires sophisticated computer aided decision (CAD) systems to help physicians with video screening and, finally, with the diagnosis. Most CAD systems used in capsule endoscopy share a common system design, but use very different image and video representations. As a result, each time a new clinical application of WCE appears, a new CAD system has to be designed from the scratch. This makes the design of new CAD systems very time consuming. Therefore, in this paper we introduce a system for small intestine motility characterization, based on Deep Convolutional Neural Networks, which circumvents the laborious step of designing specific features for individual motility events. Experimental results show the superiority of the learned features over alternative classifiers constructed using state-of-the-art handcrafted features. In particular, it reaches a mean classification accuracy of 96% for six intestinal motility events, outperforming the other classifiers by a large margin (a 14% relative performance increase)

    Deep Learning-based Solutions to Improve Diagnosis in Wireless Capsule Endoscopy

    Full text link
    [eng] Deep Learning (DL) models have gained extensive attention due to their remarkable performance in a wide range of real-world applications, particularly in computer vision. This achievement, combined with the increase in available medical records, has made it possible to open up new opportunities for analyzing and interpreting healthcare data. This symbiotic relationship can enhance the diagnostic process by identifying abnormalities, patterns, and trends, resulting in more precise, personalized, and effective healthcare for patients. Wireless Capsule Endoscopy (WCE) is a non-invasive medical imaging technique used to visualize the entire Gastrointestinal (GI) tract. Up to this moment, physicians meticulously review the captured frames to identify pathologies and diagnose patients. This manual process is time- consuming and prone to errors due to the challenges of interpreting the complex nature of WCE procedures. Thus, it demands a high level of attention, expertise, and experience. To overcome these drawbacks, shorten the screening process, and improve the diagnosis, efficient and accurate DL methods are required. This thesis proposes DL solutions to the following problems encountered in the analysis of WCE studies: pathology detection, anatomical landmark identification, and Out-of-Distribution (OOD) sample handling. These solutions aim to achieve robust systems that minimize the duration of the video analysis and reduce the number of undetected lesions. Throughout their development, several DL drawbacks have appeared, including small and imbalanced datasets. These limitations have also been addressed, ensuring that they do not hinder the generalization of neural networks, leading to suboptimal performance and overfitting. To address the previous WCE problems and overcome the DL challenges, the proposed systems adopt various strategies that utilize the power advantage of Triplet Loss (TL) and Self-Supervised Learning (SSL) techniques. Mainly, TL has been used to improve the generalization of the models, while SSL methods have been employed to leverage the unlabeled data to obtain useful representations. The presented methods achieve State-of-the-art results in the aforementioned medical problems and contribute to the ongoing research to improve the diagnostic of WCE studies.[cat] Els models d’aprenentatge profund (AP) han acaparat molta atenció a causa del seu rendiment en una àmplia gamma d'aplicacions del món real, especialment en visió per ordinador. Aquest fet, combinat amb l'increment de registres mèdics disponibles, ha permès obrir noves oportunitats per analitzar i interpretar les dades sanitàries. Aquesta relació simbiòtica pot millorar el procés de diagnòstic identificant anomalies, patrons i tendències, amb la conseqüent obtenció de diagnòstics sanitaris més precisos, personalitzats i eficients per als pacients. La Capsula endoscòpica (WCE) és una tècnica d'imatge mèdica no invasiva utilitzada per visualitzar tot el tracte gastrointestinal (GI). Fins ara, els metges revisen minuciosament els fotogrames capturats per identificar patologies i diagnosticar pacients. Aquest procés manual requereix temps i és propens a errors. Per tant, exigeix un alt nivell d'atenció, experiència i especialització. Per superar aquests inconvenients, reduir la durada del procés de detecció i millorar el diagnòstic, es requereixen mètodes eficients i precisos d’AP. Aquesta tesi proposa solucions que utilitzen AP per als següents problemes trobats en l'anàlisi dels estudis de WCE: detecció de patologies, identificació de punts de referència anatòmics i gestió de mostres que pertanyen fora del domini. Aquestes solucions tenen com a objectiu aconseguir sistemes robustos que minimitzin la durada de l'anàlisi del vídeo i redueixin el nombre de lesions no detectades. Durant el seu desenvolupament, han sorgit diversos inconvenients relacionats amb l’AP, com ara conjunts de dades petits i desequilibrats. Aquestes limitacions també s'han abordat per assegurar que no obstaculitzin la generalització de les xarxes neuronals, evitant un rendiment subòptim. Per abordar els problemes anteriors de WCE i superar els reptes d’AP, els sistemes proposats adopten diverses estratègies que aprofiten l'avantatge de la Triplet Loss (TL) i les tècniques d’auto-aprenentatge. Principalment, s'ha utilitzat TL per millorar la generalització dels models, mentre que els mètodes d’autoaprenentatge s'han emprat per aprofitar les dades sense etiquetar i obtenir representacions útils. Els mètodes presentats aconsegueixen bons resultats en els problemes mèdics esmentats i contribueixen a la investigació en curs per millorar el diagnòstic dels estudis de WCE

    A comprehensive survey of multi-view video summarization

    Full text link
    [EN] There has been an exponential growth in the amount of visual data on a daily basis acquired from single or multi-view surveillance camera networks. This massive amount of data requires efficient mechanisms such as video summarization to ensure that only significant data are reported and the redundancy is reduced. Multi-view video summarization (MVS) is a less redundant and more concise way of providing information from the video content of all the cameras in the form of either keyframes or video segments. This paper presents an overview of the existing strategies proposed for MVS, including their advantages and drawbacks. Our survey covers the genericsteps in MVS, such as the pre-processing of video data, feature extraction, and post-processing followed by summary generation. We also describe the datasets that are available for the evaluation of MVS. Finally, we examine the major current issues related to MVS and put forward the recommendations for future research(1). (C) 2020 Elsevier Ltd. All rights reserved.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2B5B01070067)Hussain, T.; Muhammad, K.; Ding, W.; Lloret, J.; Baik, SW.; De Albuquerque, VHC. (2021). A comprehensive survey of multi-view video summarization. Pattern Recognition. 109:1-15. https://doi.org/10.1016/j.patcog.2020.10756711510

    The gastrointestinal tract:From healthy mucosa to colorectal cancer

    Get PDF

    The gastrointestinal tract:From healthy mucosa to colorectal cancer

    Get PDF

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Decision fusion in healthcare and medicine : a narrative review

    Get PDF
    Objective: To provide an overview of the decision fusion (DF) technique and describe the applications of the technique in healthcare and medicine at prevention, diagnosis, treatment and administrative levels. Background: The rapid development of technology over the past 20 years has led to an explosion in data growth in various industries, like healthcare. Big data analysis within the healthcare systems is essential for arriving to a value-based decision over a period of time. Diversity and uncertainty in big data analytics have made it impossible to analyze data by using conventional data mining techniques and thus alternative solutions are required. DF is a form of data fusion techniques that could increase the accuracy of diagnosis and facilitate interpretation, summarization and sharing of information. Methods: We conducted a review of articles published between January 1980 and December 2020 from various databases such as Google Scholar, IEEE, PubMed, Science Direct, Scopus and web of science using the keywords decision fusion (DF), information fusion, healthcare, medicine and big data. A total of 141 articles were included in this narrative review. Conclusions: Given the importance of big data analysis in reducing costs and improving the quality of healthcare; along with the potential role of DF in big data analysis, it is recommended to know the full potential of this technique including the advantages, challenges and applications of the technique before its use. Future studies should focus on describing the methodology and types of data used for its applications within the healthcare sector

    2017 Annual Research Symposium Abstract Book

    Get PDF
    2017 annual volume of abstracts for science research projects conducted by students at Trinity College
    corecore