11,712 research outputs found

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Structure-Aware Sampling: Flexible and Accurate Summarization

    Full text link
    In processing large quantities of data, a fundamental problem is to obtain a summary which supports approximate query answering. Random sampling yields flexible summaries which naturally support subset-sum queries with unbiased estimators and well-understood confidence bounds. Classic sample-based summaries, however, are designed for arbitrary subset queries and are oblivious to the structure in the set of keys. The particular structure, such as hierarchy, order, or product space (multi-dimensional), makes range queries much more relevant for most analysis of the data. Dedicated summarization algorithms for range-sum queries have also been extensively studied. They can outperform existing sampling schemes in terms of accuracy on range queries per summary size. Their accuracy, however, rapidly degrades when, as is often the case, the query spans multiple ranges. They are also less flexible - being targeted for range sum queries alone - and are often quite costly to build and use. In this paper we propose and evaluate variance optimal sampling schemes that are structure-aware. These summaries improve over the accuracy of existing structure-oblivious sampling schemes on range queries while retaining the benefits of sample-based summaries: flexible summaries, with high accuracy on both range queries and arbitrary subset queries

    Moa and the multi-model architecture: a new perspective on XNF2

    Get PDF
    Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    CubiST++: Evaluating Ad-Hoc CUBE Queries Using Statistics Trees

    Get PDF
    We report on a new, efficient encoding for the data cube, which results in a drastic speed-up of OLAP queries that aggregate along any combination of dimensions over numerical and categorical attributes. We are focusing on a class of queries called cube queries, which return aggregated values rather than sets of tuples. Our approach, termed CubiST++ (Cubing with Statistics Trees Plus Families), represents a drastic departure from existing relational (ROLAP) and multi-dimensional (MOLAP) approaches in that it does not use the view lattice to compute and materialize new views from existing views in some heuristic fashion. Instead, CubiST++ encodes all possible aggregate views in the leaves of a new data structure called statistics tree (ST) during a one-time scan of the detailed data. In order to optimize the queries involving constraints on hierarchy levels of the underlying dimensions, we select and materialize a family of candidate trees, which represent superviews over the different hierarchical levels of the dimensions. Given a query, our query evaluation algorithm selects the smallest tree in the family, which can provide the answer. Extensive evaluations of our prototype implementation have demonstrated its superior run-time performance and scalability when compared with existing MOLAP and ROLAP systems

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Improving the Performance of SQL Join Operation in the Distributed Enterprise Information System by Caching

    Get PDF
    The enterprise information system (EIS) contains databases and other data sources in multiple data centers. Users query the EIS via clients. The client has a working space in the cloud. Caching data in client space will reduce the total execution time of the query. However, the client space has limited resources to store data. There are two options for caching data at the client space: caching the final results of query operations, or caching the source data tables. The problem is that some query operations such as “joining multiple big tables” will simply produce a result too big to store in cache in some cases. By contrast, caching source data tables may be a better choice in those situations. This paper presents an algorithm that combines active caching and passive caching to improve the cache hit, thus improving performance of the SQL join query in the cloud computing environment
    • 

    corecore