3,072 research outputs found

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl

    Generic Trace Semantics via Coinduction

    Get PDF
    Trace semantics has been defined for various kinds of state-based systems, notably with different forms of branching such as non-determinism vs. probability. In this paper we claim to identify one underlying mathematical structure behind these "trace semantics," namely coinduction in a Kleisli category. This claim is based on our technical result that, under a suitably order-enriched setting, a final coalgebra in a Kleisli category is given by an initial algebra in the category Sets. Formerly the theory of coalgebras has been employed mostly in Sets where coinduction yields a finer process semantics of bisimilarity. Therefore this paper extends the application field of coalgebras, providing a new instance of the principle "process semantics via coinduction."Comment: To appear in Logical Methods in Computer Science. 36 page

    Well-Pointed Coalgebras

    Get PDF
    For endofunctors of varieties preserving intersections, a new description of the final coalgebra and the initial algebra is presented: the former consists of all well-pointed coalgebras. These are the pointed coalgebras having no proper subobject and no proper quotient. The initial algebra consists of all well-pointed coalgebras that are well-founded in the sense of Osius and Taylor. And initial algebras are precisely the final well-founded coalgebras. Finally, the initial iterative algebra consists of all finite well-pointed coalgebras. Numerous examples are discussed e.g. automata, graphs, and labeled transition systems

    Varieties of Languages in a Category

    Full text link
    Eilenberg's variety theorem, a centerpiece of algebraic automata theory, establishes a bijective correspondence between varieties of languages and pseudovarieties of monoids. In the present paper this result is generalized to an abstract pair of algebraic categories: we introduce varieties of languages in a category C, and prove that they correspond to pseudovarieties of monoids in a closed monoidal category D, provided that C and D are dual on the level of finite objects. By suitable choices of these categories our result uniformly covers Eilenberg's theorem and three variants due to Pin, Polak and Reutenauer, respectively, and yields new Eilenberg-type correspondences

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra α ⁣:XHX\alpha\colon X \to HX for a functor H ⁣:SetSetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor H\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting H\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction

    Non-Deterministic Kleene Coalgebras

    Get PDF
    In this paper, we present a systematic way of deriving (1) languages of (generalised) regular expressions, and (2) sound and complete axiomatizations thereof, for a wide variety of systems. This generalizes both the results of Kleene (on regular languages and deterministic finite automata) and Milner (on regular behaviours and finite labelled transition systems), and includes many other systems such as Mealy and Moore machines
    corecore