54,192 research outputs found

    On surfaces with prescribed shape operator

    Full text link
    The problem of immersing a simply connected surface with a prescribed shape operator is discussed. From classical and more recent work, it is known that, aside from some special degenerate cases, such as when the shape operator can be realized by a surface with one family of principal curves being geodesic, the space of such realizations is a convex set in an affine space of dimension at most 3. The cases where this maximum dimension of realizability is achieved have been classified and it is known that there are two such families of shape operators, one depending essentially on three arbitrary functions of one variable (called Type I in this article) and another depending essentially on two arbitrary functions of one variable (called Type II in this article). In this article, these classification results are rederived, with an emphasis on explicit computability of the space of solutions. It is shown that, for operators of either type, their realizations by immersions can be computed by quadrature. Moreover, explicit normal forms for each can be computed by quadrature together with, in the case of Type I, by solving a single linear second order ODE in one variable. (Even this last step can be avoided in most Type I cases.) The space of realizations is discussed in each case, along with some of their remarkable geometric properties. Several explicit examples are constructed (mostly already in the literature) and used to illustrate various features of the problem.Comment: 43 pages, latex2e with amsart, v2: typos corrected and some minor improvements in arguments, minor remarks added. v3: important revision, giving credit for earlier work by others of which the author had been ignorant, minor typo correction

    Duality methods for a class of quasilinear systems

    Full text link
    Duality methods are used to generate explicit solutions to nonlinear Hodge systems, demonstrate the well-posedness of boundary value problems, and reveal, via the Hodge-B\"acklund transformation, underlying symmetries among superficially different forms of the equations.Comment: 14 page

    Anholonomic Soliton-Dilaton and Black Hole Solutions in General Relativity

    Get PDF
    A new method of construction of integral varieties of Einstein equations in three dimensional (3D) and 4D gravity is presented whereby, under corresponding redefinition of physical values with respect to anholonomic frames of reference with associated nonlinear connections, the structure of gravity field equations is substantially simplified. It is shown that there are 4D solutions of Einstein equations which are constructed as nonlinear superpositions of soliton solutions of 2D (pseudo) Euclidean sine-Gordon equations (or of Lorentzian black holes in Jackiw-Teitelboim dilaton gravity). The Belinski-Zakharov-Meison solitons for vacuum gravitational field equations are generalized to various cases of two and three coordinate dependencies, local anisotropy and matter sources. The general framework of this study is based on investigation of anholonomic soliton-dilaton black hole structures in general relativity. We prove that there are possible static and dynamical black hole, black torus and disk/cylinder like solutions (of non-vacuum gravitational field equations) with horizons being parametrized by hypersurface equations of rotation ellipsoid, torus, cylinder and another type configurations. Solutions describing locally anisotropic variants of the Schwarzschild-- Kerr (black hole), Weyl (cylindrical symmetry) and Neugebauer--Meinel (disk) solutions with anisotropic variable masses, distributions of matter and interaction constants are shown to be contained in Einstein's gravity. It is demonstrated in which manner locally anisotropic multi-soliton-- dilaton-black hole type solutions can be generated.Comment: revtex, twocolumns, 24 pages, version 3 with minor correction
    • …
    corecore