6,002 research outputs found

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Designing and evaluating virtual musical instruments: facilitating conversational user interaction

    Full text link
    This paper is concerned with the design of interactive virtual musical instruments. An interaction design strategy which uses on-screen objects that respond to user actions in physically realistic ways is described. This approach allows musicians to 'play' the virtual instruments using the sound of their familiar acoustic instruments. An investigation of user experience identified three modes of interaction that characterise the musicians' approach to the virtual instruments: instrumental, ornamental and conversational. When using the virtual instruments in instrumental mode, musicians prioritise detailed control; in ornamental mode, they surrender detailed control to the software and allow it to transform their sound; in conversational mode, the musicians allow the virtual instrument to 'talk back', helping to shape the musical direction of performance much as a human playing partner might. Finding a balance between controllability and complexity emerged as a key issue in facilitating 'conversational' interaction. © 2008 Elsevier Ltd. All rights reserved

    BETA: Behavioral testability analyzer and its application to high-level test generation and synthesis for testability

    Get PDF
    In this thesis, a behavioral-level testability analysis approach is presented. This approach is based on analyzing the circuit behavioral description (similar to a C program) to estimate its testability by identifying controllable and observable circuit nodes. This information can be used by a test generator to gain better access to internal circuit nodes and to reduce its search space. The results of the testability analyzer can also be used to select test points or partial scan flip-flops in the early design phase. Based on selection criteria, a novel Synthesis for Testability approach call Test Statement Insertion (TSI) is proposed, which modifies the circuit behavioral description directly. Test Statement Insertion can also be used to modify circuit structural description to improve its testability. As a result, Synthesis for Testability methodology can be combined with an existing behavioral synthesis tool to produce more testable circuits

    A synthesis of logic and biology in the design of dependable systems

    Get PDF
    The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that combines effectively and throughout the design lifecycle these two techniques which are schematically founded on the two pillars of formal logic and biology. Such a design paradigm would apply these techniques synergistically and systematically from the early stages of design to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems that brings these technologies together to realise their combined potential benefits

    Analysis of Hardware Descriptions

    Get PDF
    The design process for integrated circuits requires a lot of analysis of circuit descriptions. An important class of analyses determines how easy it will be to determine if a physical component suffers from any manufacturing errors. As circuit complexities grow rapidly, the problem of testing circuits also becomes increasingly difficult. This thesis explores the potential for analysing a recent high level hardware description language called Ruby. In particular, we are interested in performing testability analyses of Ruby circuit descriptions. Ruby is ammenable to algebraic manipulation, so we have sought transformations that improve testability while preserving behaviour. The analysis of Ruby descriptions is performed by adapting a technique called abstract interpretation. This has been used successfully to analyse functional programs. This technique is most applicable where the analysis to be captured operates over structures isomorphic to the structure of the circuit. Many digital systems analysis tools require the circuit description to be given in some special form. This can lead to inconsistency between representations, and involves additional work converting between representations. We propose using the original description medium, in this case Ruby, for performing analyses. A related technique, called non-standard interpretation, is shown to be very useful for capturing many circuit analyses. An implementation of a system that performs non-standard interpretation forms the central part of the work. This allows Ruby descriptions to be analysed using alternative interpretations such test pattern generation and circuit layout interpretations. This system follows a similar approach to Boute's system semantics work and O'Donnell's work on Hydra. However, we have allowed a larger class of interpretations to be captured and offer a richer description language. The implementation presented here is constructed to allow a large degree of code sharing between different analyses. Several analyses have been implemented including simulation, test pattern generation and circuit layout. Non-standard interpretation provides a good framework for implementing these analyses. A general model for making non-standard interpretations is presented. Combining forms that combine two interpretations to produce a new interpretation are also introduced. This allows complex circuit analyses to be decomposed in a modular manner into smaller circuit analyses which can be built independently

    Design and fabrication of novel microfluidic systems for microsphere generation

    Get PDF
    In this thesis, a study of the rational design and fabrication of microfluidic systems for microsphere generation is presented. The required function of microfluidic systems is to produce microspheres with the following attributes: (i) the microsphere size being around one micron or less, (ii) the size uniformity (in particular coefficient of variation (CV)) being less than 5%, and (iii) the size range being adjustable as widely as possible. Micro-electro-mechanical system (MEMS) technology, largely referring to various micro-fabrication techniques in the context of this thesis, has been applied for decades to develop microfluidic systems that can fulfill the foregoing required function of microsphere generation; however, this goal has yet to be achieved. To change this situation was a motivation of the study presented in this thesis. The philosophy behind this study stands on combining an effective design theory and methodology called Axiomatic Design Theory (ADT) with advanced micro-fabrication techniques for the microfluidic systems development. Both theoretical developments and experimental validations were carried out in this study. Consequently, the study has led to the following conclusions: (i) Existing micro-fluidic systems are coupled designs according to ADT, which is responsible for a limited achievement of the required function; (ii) Existing micro-fabrication techniques, especially for pattern transfer, have difficulty in producing a typical feature of micro-fluidic systems - that is, a large overall size (~ mm) of the device but a small channel size (~nm); and (iii) Contemporary micro-fabrication techniques to the silicon-based microfluidic system may have reached a size limit for microspheres, i.e., ~1 micron. Through this study, the following contributions to the field of the microfluidic system technology have been made: (i) Producing three rational designs of microfluidic systems, device 1 (perforated silicon membrane), device 2 (integration of hydrodynamic flow focusing and crossflow principles), and device 3 (liquid chopper using a piezoelectric actuator), with each having a distinct advantage over the others and together having achieved the requirements, size uniformity (CV ≤ 5%) and size controllability (1-186 µm); (ii) Proposing a new pattern transfer technique which combines a photolithography process with a direct writing lithography process (e.g., focused ion beam process); (iii) Proposing a decoupled design principle for micro-fluidic systems, which is effective in improving microfluidic systems for microsphere generation and is likely applicable to microfluidic systems for other applications; and (iv) Developing the mathematical models for the foregoing three devices, which can be used to further optimize the design and the microsphere generation process
    corecore