21,540 research outputs found

    Graph Dynamical Networks for Unsupervised Learning of Atomic Scale Dynamics in Materials

    Full text link
    Understanding the dynamical processes that govern the performance of functional materials is essential for the design of next generation materials to tackle global energy and environmental challenges. Many of these processes involve the dynamics of individual atoms or small molecules in condensed phases, e.g. lithium ions in electrolytes, water molecules in membranes, molten atoms at interfaces, etc., which are difficult to understand due to the complexity of local environments. In this work, we develop graph dynamical networks, an unsupervised learning approach for understanding atomic scale dynamics in arbitrary phases and environments from molecular dynamics simulations. We show that important dynamical information can be learned for various multi-component amorphous material systems, which is difficult to obtain otherwise. With the large amounts of molecular dynamics data generated everyday in nearly every aspect of materials design, this approach provides a broadly useful, automated tool to understand atomic scale dynamics in material systems.Comment: 25 + 7 pages, 5 + 3 figure

    The Parallel Complexity of Growth Models

    Full text link
    This paper investigates the parallel complexity of several non-equilibrium growth models. Invasion percolation, Eden growth, ballistic deposition and solid-on-solid growth are all seemingly highly sequential processes that yield self-similar or self-affine random clusters. Nonetheless, we present fast parallel randomized algorithms for generating these clusters. The running times of the algorithms scale as O(logā”2N)O(\log^2 N), where NN is the system size, and the number of processors required scale as a polynomial in NN. The algorithms are based on fast parallel procedures for finding minimum weight paths; they illuminate the close connection between growth models and self-avoiding paths in random environments. In addition to their potential practical value, our algorithms serve to classify these growth models as less complex than other growth models, such as diffusion-limited aggregation, for which fast parallel algorithms probably do not exist.Comment: 20 pages, latex, submitted to J. Stat. Phys., UNH-TR94-0

    Exploration of Reaction Pathways and Chemical Transformation Networks

    Full text link
    For the investigation of chemical reaction networks, the identification of all relevant intermediates and elementary reactions is mandatory. Many algorithmic approaches exist that perform explorations efficiently and automatedly. These approaches differ in their application range, the level of completeness of the exploration, as well as the amount of heuristics and human intervention required. Here, we describe and compare the different approaches based on these criteria. Future directions leveraging the strengths of chemical heuristics, human interaction, and physical rigor are discussed.Comment: 48 pages, 4 figure

    Causes of breakage and disruption in a homogeniser

    Get PDF
    Many authors have written in the past regarding the exact causes of breakage and disruption in a high pressure homogeniser, but there has been little agreement. This paper investigates some of the most likely causes of the rupture of the walls of unicellular organisms and offers suggestions obtained from various papers and work carried out

    Projection method for droplet dynamics on groove-textured surface with merging and splitting

    Full text link
    The geometric motion of small droplets placed on an impermeable textured substrate is mainly driven by the capillary effect, the competition among surface tensions of three phases at the moving contact lines, and the impermeable substrate obstacle. After introducing an infinite dimensional manifold with an admissible tangent space on the boundary of the manifold, by Onsager's principle for an obstacle problem, we derive the associated parabolic variational inequalities. These variational inequalities can be used to simulate the contact line dynamics with unavoidable merging and splitting of droplets due to the impermeable obstacle. To efficiently solve the parabolic variational inequality, we propose an unconditional stable explicit boundary updating scheme coupled with a projection method. The explicit boundary updating efficiently decouples the computation of the motion by mean curvature of the capillary surface and the moving contact lines. Meanwhile, the projection step efficiently splits the difficulties brought by the obstacle and the motion by mean curvature of the capillary surface. Furthermore, we prove the unconditional stability of the scheme and present an accuracy check. The convergence of the proposed scheme is also proved using a nonlinear Trotter-Kato's product formula under the pinning contact line assumption. After incorporating the phase transition information at splitting points, several challenging examples including splitting and merging of droplets are demonstrated.Comment: 26 page

    Sensitivity bond graphs

    Get PDF
    A sensitivity bond graph, of the same structure as the system bond graph, is shown to provide a simple and effective method of generating sensitivity functions of use in optimisation. The approach is illustrated in the context of partially known system parameter and state estimation
    • ā€¦
    corecore