56 research outputs found

    An improved positivity preserving odd degree-n Said-Ball boundary curves on rectangular grid using partial differential equation

    Get PDF
    This paper discusses the sufficient conditions for positivity preserving odd degree-n Said-Ball boundary curves defined on a rectangular grid.We derive a sufficient condition on boundary curves of rectangular Said-Ball patches where the lower bound ordinates are adjusted independently.To construct the boundary curves for each rectangular patch, the Said-Ball polynomial solution of fourth order PDE will be considered where its coefficients can be calculated using edge Said-Ball ordinates which fulfill the positivity preserving conditions.Graphical examples are presented using well-known test functions

    Fast generation of 3D deformable moving surfaces

    Get PDF
    Dynamic surface modeling is an important subject of geometric modeling due to their extensive applications in engineering design, entertainment and medical visualization. Many deformable objects in the real world are dynamic objects as their shapes change over time. Traditional geometric modeling methods are mainly concerned with static problems, therefore unsuitable for the representation of dynamic objects. Apart from the definition of a dynamic modeling problem, another key issue is how to solve the problem. Because of the complexity of the representations, currently the finite element method or finite difference method is usually used. Their major shortcoming is the excessive computational cost, hence not ideal for applications requiring real-time performance. We propose a representation of dynamic surface modeling with a set of fourth order dynamic partial differential equations (PDEs). To solve these dynamic PDEs accurately and efficiently, we also develop an effective resolution method. This method is further extended to achieve local deformation and produce n-sided patches. It is demonstrated that this new method is almost as fast and accurate as the analytical closed form resolution method and much more efficient and accurate than the numerical methods

    Optimization of friction stir welding tool advance speed via Monte-Carlo simulation of the friction stir welding process

    Get PDF
    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time

    Geometrically Consistent Aerodynamic Optimization using an Isogeometric Discontinuous Galerkin Method

    Get PDF
    International audienceThe objective of the current work is to define a design optimization methodology in aerodynamics, in which all numerical components are based on a unique geometrical representation, consistent with Computer-Aided Design (CAD) standards. In particular, the design is parameterized by Non-Uniform Rational B-Splines (NURBS), the computational domain is automatically constructed using rational BĂ©zier elements extracted from NURBS boundaries without any approximation and the resolution of the flow equations relies on an adaptive Discontinuous Galerkin (DG) method based on rational representations. A Bayesian framework is used to optimize NURBS control points, in a single-or multi-objective, constrained, global optimization framework. The resulting methodology is therefore fully CAD-consistent, high-order in space and time, includes local adaption and shock capturing capabilities, and exhibits high parallelization performance. The proposed methods are described in details and their properties are established. Finally, two design optimization problems are provided as illustrations: the shape optimization of an airfoil in transonic regime, for drag reduction with lift constraint, and the multi-objective optimization of the control law of a morphing airfoil in subsonic regime, regarding the time-averaged lift, the minimum instantaneous lift and the energy consumption
    • …
    corecore