6,410 research outputs found

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    Cuckoo: a Language for Implementing Memory- and Thread-safe System Services

    Full text link
    This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Going Stupid with EcoLab

    Full text link
    In 2005, Railsback et al. proposed a very simple model ({\em Stupid Model}) that could be implemented within a couple of hours, and later extended to demonstrate the use of common ABM platform functionality. They provided implementations of the model in several agent based modelling platforms, and compared the platforms for ease of implementation of this simple model, and performance. In this paper, I implement Railsback et al's Stupid Model in the EcoLab simulation platform, a C++ based modelling platform, demonstrating that it is a feasible platform for these sorts of models, and compare the performance of the implementation with Repast, Mason and Swarm versions

    Strongly universal string hashing is fast

    Get PDF
    We present fast strongly universal string hashing families: they can process data at a rate of 0.2 CPU cycle per byte. Maybe surprisingly, we find that these families---though they require a large buffer of random numbers---are often faster than popular hash functions with weaker theoretical guarantees. Moreover, conventional wisdom is that hash functions with fewer multiplications are faster. Yet we find that they may fail to be faster due to operation pipelining. We present experimental results on several processors including low-powered processors. Our tests include hash functions designed for processors with the Carry-Less Multiplication (CLMUL) instruction set. We also prove, using accessible proofs, the strong universality of our families.Comment: Software is available at http://code.google.com/p/variablelengthstringhashing/ and https://github.com/lemire/StronglyUniversalStringHashin

    Fast Recompilation of Object Oriented Modules

    Full text link
    Once a program file is modified, the recompilation time should be minimized, without sacrificing execution speed or high level object oriented features. The recompilation time is often a problem for the large graphical interactive distributed applications tackled by modern OO languages. A compilation server and fast code generator were developed and integrated with the SRC Modula-3 compiler and Linux ELF dynamic linker. The resulting compilation and recompilation speedups are impressive. The impact of different language features, processor speed, and application size are discussed

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page
    • …
    corecore