3 research outputs found

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 °C to 85 °C with a nominal (20 °C) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    A gate sizing and transistor fingering strategy for subthreshold CMOS circuits

    No full text

    A gate sizing and transistor fingering strategy for subthreshold CMOS circuits

    No full text
    Parallel Transistor Stacks (PTS) has been shown to be an effective technique for improving the speed of digital circuits operating in the subthreshold region which comes at the cost of power consumption and area. However, our experience shows that using PTS is not beneficial in all cases. In this paper, we present a methodology to identify whether using PTS is beneficial (or not) in a particular CMOS technology and what transistor sizing can be employed to maximize the circuit speed. Our technique is based on analyzing the Current-Over- Capacitance (COC) ratio of PMOS and NMOS transistors. The results of incorporating the proposed methodology in a 4-bit comparator and a 19-stage inverter ring oscillator, using 90 nm CMOS technology, illustrate 26% and 40% extra improvement compared to the blind use of PTS, respectively
    corecore