252 research outputs found

    Cameron-Liebler sets of k-spaces in PG(n,q)

    Get PDF
    Cameron-Liebler sets of k-spaces were introduced recently by Y. Filmus and F. Ihringer. We list several equivalent definitions for these Cameron-Liebler sets, by making a generalization of known results about Cameron-Liebler line sets in PG(n, q) and Cameron-Liebler sets of k-spaces in PG(2k + 1, q). We also present a classification result

    Cameron-Liebler sets of k-spaces in PG(n,q)

    Get PDF
    Cameron-Liebler sets of k-spaces were introduced recently by Y. Filmus and F. Ihringer. We list several equivalent definitions for these Cameron-Liebler sets, by making a generalization of known results about Cameron-Liebler line sets in PG(n, q) and Cameron-Liebler sets of k-spaces in PG(2k + 1, q). We also present a classification result

    Equivalent definitions for (degree one) Cameron-Liebler classes of generators in finite classical polar spaces

    Full text link
    In this article, we study degree one Cameron-Liebler sets of generators in all finite classical polar spaces, which is a particular type of a Cameron-Liebler set of generators in this polar space, [9]. These degree one Cameron-Liebler sets are defined similar to the Boolean degree one functions, [15]. We summarize the equivalent definitions for these sets and give a classification result for the degree one Cameron-Liebler sets in the polar spaces W(5,q) and Q(6,q)

    Cameron-Liebler sets of k-spaces in PG(n,q)

    Get PDF
    Cameron-Liebler sets of k-spaces were introduced recently in Filmus and Ihringer (J Combin Theory Ser A, 2019). We list several equivalent definitions for these Cameron-Liebler sets, by making a generalization of known results about Cameron-Liebler line sets in PG(n,q) and Cameron-Liebler sets of k-spaces in PG(2k+1,q). We also present some classification results

    Regular ovoids and Cameron-Liebler sets of generators in polar spaces

    Full text link
    Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular m-ovoids of k-spaces are introduced as a generalization of m-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets

    Boolean degree 1 functions on some classical association schemes

    Get PDF
    We investigate Boolean degree 1 functions for several classical association schemes, including Johnson graphs, Grassmann graphs, graphs from polar spaces, and bilinear forms graphs, as well as some other domains such as multislices (Young subgroups of the symmetric group). In some settings, Boolean degree 1 functions are also known as \textit{completely regular strength 0 codes of covering radius 1}, \textit{Cameron--Liebler line classes}, and \textit{tight sets}. We classify all Boolean degree 11 functions on the multislice. On the Grassmann scheme Jq(n,k)J_q(n, k) we show that all Boolean degree 11 functions are trivial for n≥5n \geq 5, k,n−k≥2k, n-k \geq 2 and q∈{2,3,4,5}q \in \{ 2, 3, 4, 5 \}, and that for general qq, the problem can be reduced to classifying all Boolean degree 11 functions on Jq(n,2)J_q(n, 2). We also consider polar spaces and the bilinear forms graphs, giving evidence that all Boolean degree 11 functions are trivial for appropriate choices of the parameters.Comment: 22 pages; accepted by JCTA; corrected Conjecture 6.
    • …
    corecore