674 research outputs found

    Improving Inter-service bandwidth fairness in Wireless Mesh Networks

    Get PDF
    Includes bibliographical references.We are currently experiencing many technological advances and as a result, a lot of applications and services are developed for use in homes, offices and out in the field. In order to attract users and customers, most applications and / or services are loaded with graphics, pictures and movie clips. This unfortunately means most of these next generation services put a lot of strain on networking resources, namely bandwidth. Efficient management of bandwidth in next generation wireless network is therefore important for ensuring fairness in bandwidth allocation amongst multiple services with diverse quality of service needs. A number of algorithms have been proposed for fairness in bandwidth allocation in wireless networks, and some researchers have used game theory to model the different aspects of fairness. However, most of the existing algorithms only ensure fairness for individual requests and disregard fairness among the classes of services while some other algorithms ensure fairness for the classes of services and disregard fairness among individual requests

    A distributed auctioneer for resource allocation in decentralized systems

    Get PDF
    In decentralized systems, nodes often need to coordinate to access shared resources in a fair manner. One approach to perform such arbitration is to rely on auction mechanisms. Although there is an extensive literature that studies auctions, most of these works assume the existence of a central, trusted auctioneer. Unfortunately, in fully decentralized systems, where the nodes that need to cooperate operate under separate spheres of control, such central trusted entity may not exist. Notable examples of such decentralized systems include community networks, clouds of clouds, cooperative nano data centres, among others. In this paper, we make theoretical and practical contributions to distribute the role of the auctioneer. From the theoretical perspective, we propose a framework of distributed simulations of the auctioneer that are Nash equilibria resilient to coalitions and asynchrony. From the practical perspective, our protocols leverage the distributed nature of the simulations to parallelise the execution. We have implemented a prototype that instantiates the framework for bandwidth allocation in community networks, and evaluated it in a real distributed setting.Peer ReviewedPostprint (author's final draft

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Multi-Stage Resource Allocation in Hybrid 25G-EPON and LTE-Advanced Pro FiWi Networks for 5G Systems

    Get PDF
    The 5G vision is not restricted solely to the wireless domain and its challenging requirements cannot be fulfilled with- out the efficient integration of cutting-edge technologies in all portions of the telecommunications infrastructure. The promoted architectures for next generation telecommunications systems involve high capacity network domains, which operate flexibly and seamlessly to offer full Quality of Experience to all types of subscribers. The proliferation of highly demanding multimedia services and the advanced features of modern communication devices necessitate the development of end-to-end schemes which can efficiently distribute large amount of network resources anywhere and whenever needed. The paper introduces a new resource allocation scheme for cutting-edge Fiber-Wireless networks is introduced that can be applied in the fronthaul portion of 5G-enabled architectures. The adopted technologies are the forthcoming 25G-EPON for the optical domain and the 5G-ready LTE-Advanced Pro for the wireless domain. The proposed scheme performs allocation decisions based on the outcome of an adjustable multi- stage optimization problem. The optimization factors are directly related to the major considerations in bandwidth distribution, namely priority-based traffic differentiation, power awareness, and fairness provision. The conducted evaluations prove that this approach is able to ensure high efficiency in network operations

    Congestion mitigation in LTE base stations using radio resource allocation techniques with TCP end to end transport

    Get PDF
    As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory. As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory

    Repeated game theory as a framework for algorithm development in communication networks

    Get PDF
    This article presents a tutorial on how to use repeated game theory as a framework for algorithm development in communication networks. The article starts by introducing the basis of one-stage games and how the outcome of such games can be predicted, through iterative elimination and Nash equilibrium. In communication networks, however, not all problems can be modeled using one-stage games. Some problems can be better modeled through multi-stage games, as many problems in communication networks consist of several iterations or decisions that need to be made over time. Of all the multi-stage games, the infinite-horizon repeated games were chosen to be the focus in this tutorial, because optimal equilibrium settings can be achieved, contrarily to the suboptimal equilibria achieved in other types of game. With the theoretical concepts introduced, it is then shown how the developed game theoretical model, and devised equilibrium, can be used as a basis for the behavior of an algorithm, which is supposed to solve a particular problem and will be running at specific network devices. Copyright (C) 2015 John Wiley & Sons, Ltd.FCT (Foundation for Science and Technology) of Portugal within CEOT (Center for Electronic, Optoelectronic and Telecommunications)info:eu-repo/semantics/publishedVersio
    • …
    corecore