1,123 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Spreading processes in Multilayer Networks

    Get PDF
    Several systems can be modeled as sets of interconnected networks or networks with multiple types of connections, here generally called multilayer networks. Spreading processes such as information propagation among users of an online social networks, or the diffusion of pathogens among individuals through their contact network, are fundamental phenomena occurring in these networks. However, while information diffusion in single networks has received considerable attention from various disciplines for over a decade, spreading processes in multilayer networks is still a young research area presenting many challenging research issues. In this paper we review the main models, results and applications of multilayer spreading processes and discuss some promising research directions.Comment: 21 pages, 3 figures, 4 table

    Game-Theoretic based Power Allocation for a Full Duplex D2D Network

    Get PDF
    International audienceThis paper tackles the power allocation optimization problem of a Full duplex(FD) D2D underlaying cellular network. In particular, we aim at providing a distributed power allocation algorithm for this type of network. Towards this end, first, we formulate the PA problem as a non-cooperative game in which each user decides how much power to transmit over its allocated channel to maximize its link's energy-efficiency (EE). Next, we show that this game admits a unique Nash equilibrium (NE) point which can be obtained through an iterative process. After that, we show that this iterative algorithm can be implemented in a fully distributed manner. Finally, we compare our proposed distributed algorithm with the conventional centralized algorithms and simulation results show the importance of the proposed solution

    Contagion dynamics in multilevel and structured populations.

    Get PDF
    Existen numerosos procesos de contagio sobre redes, como la propagación de epidemias, los rumores, la información u otros fenómenos no lineales propios de los sistemas complejos humanos. Desde la perspectiva de la modelización matemática, los procesos de contagio en poblaciones estructuradas se están volviendo cada vez más sofisticados en lo que respecta al tipo de interacciones no triviales involucradas en ellos. Los modelos han evolucionado desde los simples métodos compartimentales a modelos estructurados en los que se tienen en cuenta las heterogeneidades de la población. Además, para visualizar estas jerarquías y heterogeneidades de los sistemas complejos humanos, también consideramos la representación multicapa de las poblaciones. En esta tesis, intentamos explorar la punta del iceberg en lo que respecta a procesos de contagio sobre poblaciones basándonos en varios modelos matemáticos. Nuestro objetivo es entender la complejidad de las dinámicas de contagio en poblaciones estructuradas y multinivel.En el primer capítulo, nos centramos en presentar el desarrollo de algunas de las teorías principales que se utilizan para estudiar los sistemas complejos. El descubrimiento de las interacciones no lineales hizo que le método del reduccionismo fuese cuestionado, dado que el comportamiento general no puede describirse como una simple superposición de pequeñas escalas. La ciencia de redes busca caracterizar los sistemas complejos de diversos campos. Al mismo tiempo, la teoría de grafos proporciona las herramientas matemáticas necesarias para describir redes realistas. Discutiremos algunas de las cantidades fundamentales y las métricas más relevantes para la caracterización de la estructura de la red, así como varios ejemplos de modelos de red. Además, repasaremos brevemente los principios básicos de las redes multicapa que rompen la limitación de un solo tipo de conexión existente en las redes monocapa, estableciendo la base para explorar y generalizar estos conceptos.A continuación, estudiaremos procesos dinámicos comenzando por una breve introducción a los modelos matemáticos que se usarán durante el resto de la tesis. En el caso de la ecuación maestra, resaltaremos el rol de los procesos de Markov así como la aproximación de campo medio, sin centrarnos en sus soluciones completas. Los métodos de modelización y las reglas de actualización que se utilizan en las simulaciones numéricas también se presentan en detalle. En esta tesis, nos centraremos en el problema de la propagación de epidemias sobre redes, un tema que despierta gran interés en el campo de los procesos de propagación y contagio. Después de revisar las propiedades y los resultados teóricos de algunos de los modelos epidemiológicos típicos, con varias simplificaciones desde el punto de vista matemático, exploraremos varias medidas importantes en el campo de la epidemiología, i.e., el número reproductivo básico y la inmunidad de grupo. Después, implementaremos un modelo clásico de epidemias sobre redes multicapa para explorar el papel que juega la direccionalidad utilizando funciones generatrices. Terminaremos el capítulo 2 modelizando un tipo especial de procesos de contagio social, en particular, utilizaremos un modelo compartimental para estudiar la propagación de la corrupción. Prestaremos atención a las condiciones críticas para que surja este tipo de comportamiento desarrollando la aproximación de campo medio y comparando sus predicciones con simulaciones. Es más, extenderemos el modelo de corrupción a un sistema de dos capas en el que los flujos de contagio pueden ser diferentes en cada capa para investigar el papel que juega el solapamiento de enlaces y las correlaciones de grado entre capas en la evolución de las actividades honestas y corruptas.Resulta evidente que la complejidad de los sistemas humanos del mundo real afecta la precisión con la que se pueden predecir las epidemias y algunas propiedades específicas de los sistemas. Sin embargo, debido al desarrollo de la ciencia de datos, fuentes de datos masivas y muy informativas pueden utilizarse para enriquecer la topología de la red de forma que se acerque a los sistemas reales. En al tercera parte de esta tesis, comenzaremos describiendo los retos y las oportunidades que han surgido durante el desarrollo de la ciencia de datos. A continuación, intentaremos conseguir una imagen más realista de la estructura interna de las redes de contacto utilizando datos reales. Además, ilustraremos la importancia de utilizar una perspectiva conducida por los datos en lo que respecta a la modelización de redes a la hora de estudiar la propagación de epidemias en redes de contacto. En este caso, la variabilidad de patrones de interacción que surge de la heterogeneidad de la población, sus comportamientos sociales, etc. puede ser capturada correctamente.Bajo este mismo desarrollo teórico, consideraremos la edad de los individuos y sus patrones de interacción social para generar redes multicapa con estructura de edad para estudiar el problema de la inmunidad de grupo del SARS-CoV-2 y evaluar el impacto que tres estrategias de vacunación pueden tener a la hora de eliminar la transmisión de la panedmia. Después, para explorar la dinámica de las enfermedades que se propagan en entornos hospitalarios (HAI, por sus siglas en inglés) cuando los pacientes están recibiendo tratamiento en ellos, utilizaremos una colección de datos espacio-temporales recogida en tres hospitales de Canadá para generar las redes de interacción entre los trabajadores hospitalarios (HCWs). Nos centraremos en determinar cuantitativemente el riesgo de que las HAIs se propaguen por las diferentes unidades de un hospital y los varios grupos de HCWs, respectivamente. Calcularemos el riesgo de las unidades espaciales usando el tiempo de llegada de la enfermedad y el número de infecciones producidas en cada unidad. En el caso de los HCWs, la probabilidad de infectarse y el número de reproducción efectivo son usados como indicador del riesgo de HCWs.Concluiremos la tesis presentando nuestras conclusiones y discutiendo algunos de los restos que quedan por explorar en el futuro.<br /

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    The structure and dynamics of multilayer networks

    Get PDF
    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.Comment: In Press, Accepted Manuscript, Physics Reports 201
    corecore