3,886 research outputs found

    Interdependent Scheduling Games

    Get PDF
    We propose a model of interdependent scheduling games in which each player controls a set of services that they schedule independently. A player is free to schedule his own services at any time; however, each of these services only begins to accrue reward for the player when all predecessor services, which may or may not be controlled by the same player, have been activated. This model, where players have interdependent services, is motivated by the problems faced in planning and coordinating large-scale infrastructures, e.g., restoring electricity and gas to residents after a natural disaster or providing medical care in a crisis when different agencies are responsible for the delivery of staff, equipment, and medicine. We undertake a game-theoretic analysis of this setting and in particular consider the issues of welfare maximization, computing best responses, Nash dynamics, and existence and computation of Nash equilibria.Comment: Accepted to IJCAI 201

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Decentralized Convergence to Nash Equilibria in Constrained Deterministic Mean Field Control

    Full text link
    This paper considers decentralized control and optimization methodologies for large populations of systems, consisting of several agents with different individual behaviors, constraints and interests, and affected by the aggregate behavior of the overall population. For such large-scale systems, the theory of aggregative and mean field games has been established and successfully applied in various scientific disciplines. While the existing literature addresses the case of unconstrained agents, we formulate deterministic mean field control problems in the presence of heterogeneous convex constraints for the individual agents, for instance arising from agents with linear dynamics subject to convex state and control constraints. We propose several model-free feedback iterations to compute in a decentralized fashion a mean field Nash equilibrium in the limit of infinite population size. We apply our methods to the constrained linear quadratic deterministic mean field control problem and to the constrained mean field charging control problem for large populations of plug-in electric vehicles.Comment: IEEE Trans. on Automatic Control (cond. accepted

    Autonomous Agents for Business Process Management

    No full text
    Traditional approaches to managing business processes are often inadequate for large-scale organisation-wide, dynamic settings. However, since Internet and Intranet technologies have become widespread, an increasing number of business processes exhibit these properties. Therefore, a new approach is needed. To this end, we describe the motivation, conceptualization, design, and implementation of a novel agent-based business process management system. The key advance of our system is that responsibility for enacting various components of the business process is delegated to a number of autonomous problem solving agents. To enact their role, these agents typically interact and negotiate with other agents in order to coordinate their actions and to buy in the services they require. This approach leads to a system that is significantly more agile and robust than its traditional counterparts. To help demonstrate these benefits, a companion paper describes the application of our system to a real-world problem faced by British Telecom

    A privacy-friendly game-theoretic distributed scheduling system for domestic appliances

    Get PDF
    open3Game-theoretic Demand Side Management (DSM) systems have been investigated as a decentralized approach for the collaborative scheduling of the usage of domestic electrical appliances within a set of households. Such systems allow for the shifting of the starting time of deferrable devices according to the current energy price or power grid condition, in order to reduce the individual monthly bill or to adjust the power load experienced by the grid while meeting the users’ preferences about the time of use. The drawback of DSM distributed protocols is that they require each user to communicate his/her own energy consumption patterns to the other users, which may leak sensitive information regarding private habits. This paper proposes a distributed Privacy-Friendly DSM system which preserves users’ privacy by integrating data aggregation and perturbation techniques: users decide their schedule according to aggregated consumption measurements perturbed by means of Additive White Gaussian Noise (AWGN). We evaluate the noise power and the size of the set of users required to achieve a given privacy level, quantified by means of the Kullback-Leibler divergence. The performance of our proposed DSM system are compared to the ones obtained by a benchmark system which does not support privacy preservation in terms of social cost, peak demand and convergence time. Results show that privacy can be preserved at the cost of increasing the peak demand and the number of game iterations, whereas social cost is only marginally incremented.C Rottondi; A Barbato; G VerticaleRottondi, CRISTINA EMMA MARGHERITA; Barbato, Antimo; Verticale, Giacom

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine EinfĂĽhrung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. AnschlieĂźend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing
    • …
    corecore