77 research outputs found

    Synchronous response modelling and control of an annular momentum control device

    Get PDF
    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware

    Artificial Neural Network-Based Gain-Scheduled State Feedback Speed Controller for Synchronous Reluctance Motor

    Get PDF
    This paper focuses on designing a gain-scheduled (G-S) state feedback controller (SFC) for synchronous reluctance motor (SynRM) speed control with non-linear inductance characteristics. The augmented model of the drive with additional state variables is introduced to assure precise control of selected state variables (i.e. angular speed and d-axis current). Optimal, non-constant coefficients of the controller are calculated using a linear-quadratic optimisation method. Non-constant coefficients are approximated using an artificial neural network (ANN) to assure superior accuracy and relatively low usage of resources during implementation. To the best of our knowledge, this is the first time when ANN-based gain-scheduled state feedback controller (G-S SFC) is applied for speed control of SynRM. Based on numerous simulation tests, including a comparison with a signum-based SFC, it is shown that the proposed solution assures good dynamical behaviour of SynRM drive and robustness against q-axis inductance, the moment of inertia and viscous friction fluctuations

    A novel design and control solution for an aircraft sidestick actuator based on Halbach permanent magnet machine

    Get PDF
    This paper is concerned with the design and control of a new sidestick actuators used to handle a civilian aircraft behaviour. Indeed, a discrete robust adaptive sliding mode control for a new designed aircraft sidestick based on synchronous Halbach permanent magnet machine. The main objective is to provide a new design structure and a control solution that ensures maintaining high performance specifications for the actuator and respects the set of constraints required by the considered aeronautical application. Indeed, this study achieved in a partnership with an industrial center of excellence for Fly by Wire Cockpit Controls (side sticks, rudder controls, thrust controls), proposes a novel design that enhances the characteristics of the actuator’s structure and the human machine interface between the pilot and the aircraft. Then, a new control strategy is proposed to optimize the efficiency of this actuator for the considered application. It is based on a discrete optimal adaptive sliding mode control considering time delays and uncertainties in the model by using a delay ahead predictor. The proposed strategy combines an optimal sliding mode surface with the delay ahead predictor in an adaptive control structure. Indeed, a varying parameter is used to achieve an ”on-line” adaption to the varying level of disturbances that affects the system. Then, since the sidestick actuator is designed to handle an aircraft displacement, the proposed control strategy is designed for position tracking. Simulations performed on the previously designed actuator prove the efficiency of the proposed technological solution for aircraft position control

    High-performance control for a permanent-magnet linear synchronous generator using state feedback control scheme plus grey wolf optimisation

    Full text link
    © 2020 The Institution of Engineering and Technology. This study proposes an optimal control scheme for a permanent-magnet linear synchronous generator (PMLSG) using the state feedback control (SFC) method plus the grey wolf optimisation (GWO) algorithm. First, A novel state-space model of linear PMLSG is established in order to obtain desired dynamics and enough power when used for the smooth wave energy. Second, the GWO algorithm is adopted to acquire weighting matrices Q and R in the process of optimising linear quadratic regulator (LQR). What is more, a penalty term is brought into the fitness index to reduce the overstrike of output voltage and keep the rate of work more stable. Finally, optimal LQR-based SFC with and without penalty term and proportional-integral (PI) controllers are compared both in simulations and in experiments. Results clearly prove that the proposed optimal control strategy performs a better response when compared to other strategies

    State feedback control for a PM hub motor based on gray Wolf optimization algorithm

    Full text link
    © 1986-2012 IEEE. This paper presents an optimal control strategy for a permanent-magnet synchronous hub motor (PMSHM) drive using the state feedback control method plus the gray wolf optimization (GWO) algorithm. First, the linearized PMSHM mathematical model is obtained by voltage feedforward compensation. Second, to acquire satisfactory dynamics of speed response and zero d-axis current, the discretized state-space model of the PMSHM is augmented with the integral of rotor speed error and integral of d-axis current error. Then, the GWO algorithm is employed to acquire the weighting matrices Q and R in linear quadratic regulator optimization process. Moreover, a penalty term is introduced to the fitness index to suppress overshoots effectively. Finally, comparisons among the GWO-based state feedback controller (SFC) with and without the penalty term, the conventional SFC, and the genetic algorithm enhanced proportional-integral controllers are conducted in both simulations and experiments. The comparison results show the superiority of the proposed SFC with the penalty term in fast response

    Modeling and Simulation of Novel Electric/Hybrid Electric Multicopter Architectures for Urban Air Mobility

    Get PDF
    Presented at AIAA Propulsion and Energy Forum, August 9-11, 2021, VIRTUAL EVENTThis paper introduces a dynamic simulation environment developed for novel multi-copter aircraft architectures. The development is motivated by the need to better understand the safety implications of architectural design choices and to provide a formal reliability assessment framework for new Vertical Take-Off and Landing (VTOL) concepts able to consider various airframe and subsystems dynamic behavior. The concepts of interests are different multi-copters configurations investigated by NASA and featuring either electric, hybrid electric, or turboshaft driven powertrains. The simulation environment is a timemarching dynamic simulator formulated using physics-based subsystem models for the batteries, electric motors, turboshaft engines and electric generators. Identified fault modes are integrated into the subsystem models for subsequent use during reliability assessments. The impacts of subsystem faults are propagated to the vehicle flight dynamic response for analysis of their impact on the ability of the vehicle to sustain safe operations. Detailed features of the electric quadrotor model are provided to illustrate the simulation capabilities. Some faults are inserted on the different aircraft in hover and the subsystems behavior is successfully propagated at the vehicle level

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    Advanced Modeling and Research in Hybrid Microgrid Control and Optimization

    Get PDF
    This book presents the latest solutions in fuel cell (FC) and renewable energy implementation in mobile and stationary applications. The implementation of advanced energy management and optimization strategies are detailed for fuel cell and renewable microgrids, and for the multi-FC stack architecture of FC/electric vehicles to enhance the reliability of these systems and to reduce the costs related to energy production and maintenance. Cyber-security methods based on blockchain technology to increase the resilience of FC renewable hybrid microgrids are also presented. Therefore, this book is for all readers interested in these challenging directions of research
    • 

    corecore