610 research outputs found

    R3^3SGM: Real-time Raster-Respecting Semi-Global Matching for Power-Constrained Systems

    Full text link
    Stereo depth estimation is used for many computer vision applications. Though many popular methods strive solely for depth quality, for real-time mobile applications (e.g. prosthetic glasses or micro-UAVs), speed and power efficiency are equally, if not more, important. Many real-world systems rely on Semi-Global Matching (SGM) to achieve a good accuracy vs. speed balance, but power efficiency is hard to achieve with conventional hardware, making the use of embedded devices such as FPGAs attractive for low-power applications. However, the full SGM algorithm is ill-suited to deployment on FPGAs, and so most FPGA variants of it are partial, at the expense of accuracy. In a non-FPGA context, the accuracy of SGM has been improved by More Global Matching (MGM), which also helps tackle the streaking artifacts that afflict SGM. In this paper, we propose a novel, resource-efficient method that is inspired by MGM's techniques for improving depth quality, but which can be implemented to run in real time on a low-power FPGA. Through evaluation on multiple datasets (KITTI and Middlebury), we show that in comparison to other real-time capable stereo approaches, we can achieve a state-of-the-art balance between accuracy, power efficiency and speed, making our approach highly desirable for use in real-time systems with limited power.Comment: Accepted in FPT 2018 as Oral presentation, 8 pages, 6 figures, 4 table

    A novel fusion approach in the extraction of kernel descriptor with improved effectiveness and efficiency

    Get PDF
    Image representation using feature descriptors is crucial. A number of histogram-based descriptors are widely used for this purpose. However, histogram-based descriptors have certain limitations and kernel descriptors (KDES) are proven to overcome them. Moreover, the combination of more than one KDES performs better than an individual KDES. Conventionally, KDES fusion is performed by concatenating them after the gradient, colour and shape descriptors have been extracted. This approach has limitations in regard to the efficiency as well as the effectiveness. In this paper, we propose a novel approach to fuse different image features before the descriptor extraction, resulting in a compact descriptor which is efficient and effective. In addition, we have investigated the effect on the proposed descriptor when texture-based features are fused along with the conventionally used features. Our proposed descriptor is examined on two publicly available image databases and shown to provide outstanding performances

    Multiobjective evolutionary optimization of quadratic Takagi-Sugeno fuzzy rules for remote bathymetry estimation

    Get PDF
    In this work we tackle the problem of bathymetry estimation using: i) a multispectral optical image of the region of interest, and ii) a set of in situ measurements. The idea is to learn the relation that between the reflectances and the depth using a supervised learning approach. In particular, quadratic Takagi-Sugeno fuzzy rules are used to model this relation. The rule base is optimized by means of a multiobjective evolutionary algorithm. To the best of our knowledge this work represents the first use of a quadratic Takagi-Sugeno fuzzy system optimized by a multiobjective evolutionary algorithm with bounded complexity, i.e., able to control the complexity of the consequent part of second-order fuzzy rules. This model has an outstanding modeling power, without inheriting the drawback of complexity due to the use of quadratic functions (which have complexity that scales quadratically with the number of inputs). This opens the way to the use of the proposed approach even for medium/high dimensional problems, like in the case of hyper-spectral images

    Investigating the latency cost of statistical learning of a Gaussian mixture simulating on a convolutional density network with adaptive batch size technique for background modeling

    Get PDF
    Background modeling is a promising field of study in video analysis, with a wide range of applications in video surveillance. Deep neural networks have proliferated in recent years as a result of effective learning-based approaches to motion analysis. However, these strategies only provide a partial description of the observed scenes' insufficient properties since they use a single-valued mapping to estimate the target background's temporal conditional averages. On the other hand, statistical learning in the imagery domain has become one of the most widely used approaches due to its high adaptability to dynamic context transformation, especially Gaussian Mixture Models. Specifically, these probabilistic models aim to adjust latent parameters to gain high expectation of realistically observed data; however, this approach only concentrates on contextual dynamics in short-term analysis. In a prolonged investigation, it is challenging so that statistical methods cannot reserve the generalization of long-term variation of image data. Balancing the trade-off between traditional machine learning models and deep neural networks requires an integrated approach to ensure accuracy in conception while maintaining a high speed of execution. In this research, we present a novel two-stage approach for detecting changes using two convolutional neural networks in this work. The first architecture is based on unsupervised Gaussian mixtures statistical learning, which is used to classify the salient features of scenes. The second one implements a light-weighted pipeline of foreground detection. Our two-stage system has a total of approximately 3.5K parameters but still converges quickly to complex motion patterns. Our experiments on publicly accessible datasets demonstrate that our proposed networks are not only capable of generalizing regions of moving objects with promising results in unseen scenarios, but also competitive in terms of performance quality and effectiveness foreground segmentation. Apart from modeling the data's underlying generator as a non-convex optimization problem, we briefly examine the communication cost associated with the network training by using a distributed scheme of data-parallelism to simulate a stochastic gradient descent algorithm with communication avoidance for parallel machine learnin
    • …
    corecore