1,273 research outputs found

    An ANFIS estimator based data aggregation scheme for fault tolerant Wireless Sensor Networks

    Get PDF
    AbstractWireless Sensor Networks (WSNs) are used widely in many mission critical applications like battlefield surveillance, environmental monitoring, forest fire monitoring etc. A lot of research is being done to reduce the energy consumption, enhance the network lifetime and fault tolerance capability of WSNs. This paper proposes an ANFIS estimator based data aggregation scheme called Neuro-Fuzzy Optimization Model (NFOM) for the design of fault-tolerant WSNs. The proposed scheme employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) estimator for intra-cluster and inter-cluster fault detection in WSNs. The Cluster Head (CH) acts as the intra-cluster fault detection and data aggregation manager. It identifies the faulty Non-Cluster Head (NCH) nodes in a cluster by the application of the proposed ANFIS estimator. The CH then aggregates data from only the normal NCHs in that cluster and forwards it to the high-energy gateway nodes. The gateway nodes act as the inter-cluster fault detection and data aggregation manager. They pro-actively identify the faulty CHs by the application of the proposed ANFIS estimator and perform inter-cluster fault tolerant data aggregation. The simulation results confirm that the proposed NFOM data aggregation scheme can significantly improve the network performance as compared to other existing schemes with respect to different performance metrics

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    Research on Fault Analysis and Fault-Tolerant Control of EV/HEV Powertrain

    No full text
    International audienceThis paper presents research works in the topics of fault analysis and fault tolerant control of an electric vehicle powered by an inverter-fed induction motor drive and the usual sensors. The considered failures are mainly measurement error due to faulty sensors and power inverter malfunctions. When sensor failure occurs, both software and hardware redundancies have been investigated. Software redundancy has been evaluated in case of speed sensor failure. Hardware redundancy has been used in the case of power inverter failures with a fault-tolerant 4-leg topology. This topology exploits the induction motor neutral accessibility for fault-tolerant purposes. The proposed fault-tolerant approach brings a significant improvement compared to the phase-leg topology. This paper also presents the experimental validation of an efficient reconfiguration mechanism (transition strategy) at sensor fault occurrence

    Review of Software Fault-Tolerance Methods for Reliability Enhancement of Real-Time Software Systems

    Get PDF
    Real time systems are those systems which must guarantee to response correctly within strict time constraint or within deadline. Failures can arise from both functional errors as well as timing bugs. Hence, it is necessary to provide temporal correctness of programs used in real time applications in addition to providing functional correctness. Although, there are several researches concerned with achieving fault tolerance in the presence of various functional and operational errors but many of them did not address the problem concerned with the timing bugs which is an important issue in real time systems. As for real time systems, many times it becomes a necessity for a given service to be delivered within the specified time deadline. Therefore, this paper reviews the existing approaches from the perspective of  real time systems to analyse the shortcomings of these approaches to  present a versatile and cost effective approach in the presence of timing bugs for providing fault tolerance to enhance the reliability of the real time software applications

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast

    Safety verification of a fault tolerant reconfigurable autonomous goal-based robotic control system

    Get PDF
    Fault tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion Laboratory, takes a goal-based control approach. In this paper, a method for converting goal network control programs into linear hybrid systems is developed. The linear hybrid system can then be verified for safety in the presence of failures using existing symbolic model checkers. An example task is simulated in MDS and successfully verified using HyTech, a symbolic model checking software for linear hybrid systems

    The challenge of advanced model-based fdir techniques for aerospace systems: the 2011 situation

    Full text link
    For aerospace systems, advanced model-based Fault Detection, Identification, and Recovery (FDIR) challenges range from predesign and design stages for upcoming and new programs up to the improvement of the performance of in-service flying systems. However, today, their application to real aerospace world has remained extremely limited. The paper underlines the reasons for a widening gap between the advanced scientific FDIR methods being developed by the academic community and technological solutions demanded by the aerospace industry
    • 

    corecore