3,603 research outputs found

    Clustering algorithms and their effect on edge preservation in image compression

    Get PDF
    Image compression aims to reduce the amount of data that is stored or transmitted for images. One technique that may be used to this end is vector quantization. Vectors may be used to represent images. Vector quantization reduces the number of vectors required for an image by representing a cluster of similar vectors by one typical vector that is part of a set of vectors referred to as the code book. For compression, for each image vector, only the closest codebook vector is stored or transmitted. For reconstruction, the image vectors are again replaced by the the closest codebook vectors. Hence vector quantization is a lossy compression technique and the quality of the reconstructed image depends strongly on the quality of the codebook. The design of the codebook is therefore an important part of the process. In this thesis we examine three clustering algorithms which can be used for codebook design in image compression: c-means (CM), fuzzy c-means (FCM) and learning vector quantization (LVQ). We give a description of these algorithms and their application to codebook design. Edges are an important part of the visual information contained in an image. It is essential therefore to use codebooks which allow an accurate representation of the edges. One of the shortcomings of using vector quantization is poor edge representation. We therefore carry out experiments using these algorithms to compare their edge preserving qualities. We also investigate the combination of these algorithms with classified vector quantization (CVQ) and the replication method (RM). Both these methods have been suggested as methods for improving edge representation. We use a cross validation approach to estimate the mean squared error to measure the performance of each of the algorithms and the edge preserving methods. The results reflect that the edges are less accurately represented than the non - edge areas when using CM, FCM and LVQ. The advantage of using CVQ is that the time taken for code book design is reduced particularly for CM and FCM. RM is found to be effective where the codebook is trained using a set that has larger proportions of edges than the test set

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    S-TREE: Self-Organizing Trees for Data Clustering and Online Vector Quantization

    Full text link
    This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm, can be implemented with various cost functions. An alternative implementation, S-TREE2, which uses a new double-path search procedure, is also developed. S-TREE2 implements an online procedure that approximates an optimal (unstructured) clustering solution while imposing a tree-structure constraint. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including a Gauss-Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction.Office of Naval Research (N00014-95-10409, N00014-95-0G57

    Perceptual Copyright Protection Using Multiresolution Wavelet-Based Watermarking And Fuzzy Logic

    Full text link
    In this paper, an efficiently DWT-based watermarking technique is proposed to embed signatures in images to attest the owner identification and discourage the unauthorized copying. This paper deals with a fuzzy inference filter to choose the larger entropy of coefficients to embed watermarks. Unlike most previous watermarking frameworks which embedded watermarks in the larger coefficients of inner coarser subbands, the proposed technique is based on utilizing a context model and fuzzy inference filter by embedding watermarks in the larger-entropy coefficients of coarser DWT subbands. The proposed approaches allow us to embed adaptive casting degree of watermarks for transparency and robustness to the general image-processing attacks such as smoothing, sharpening, and JPEG compression. The approach has no need the original host image to extract watermarks. Our schemes have been shown to provide very good results in both image transparency and robustness.Comment: 13 pages, 7 figure

    Binary Biometric Representation through Pairwise Adaptive Phase Quantization

    Get PDF
    Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations from arbitrary real-valued biometric modalities. In this paper, we propose a pairwise adaptive phase quantization (APQ) method, together with a long-short (LS) pairing strategy, which aims to maximize the overall detection rate. Experimental results on the FVC2000 fingerprint and the FRGC face database show reasonably good verification performances.\ud \u

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification

    Efficient SAR Raw Data Compression in Frequency Domain

    Get PDF
    SAR raw data compression is necessary to reduce huge amounts of SAR data for a memory on board a satellite, space shuttle or aircraft and for later downlink to a ground station. In view of interferometric and polarimetric applications for SAR data, it becomes more and more important to pay attention to phase errors caused by data compression. Herein, a detailed comparison of block adaptive quantization in time domain (BAQ) and in frequency domain (FFT-BAQ) is given. Inclusion of raw data compression in the processing chain allows an efficient use of the FFT-BAQ and makes implementation for on-board data compression feasible. The FFT-BAQ outperforms the BAQ in terms of signal-to-quantization noise ratio and phase error and allows a direct decimation of the oversampled data equivalent to FIR-filtering in time domain. Impacts on interferometric phase and coherency are also given
    corecore