6,285 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Assessment of Mass Transit Quality of Service Employing Passenger Satisfaction in Soft Computing Techniques

    Get PDF
    Numerous methods for relating Quality of service with Customer satisfaction have been evolved. In this research, Neuro-Fuzzy approach has been used for assessing the Quality of Service based on the data collected on customer satisfaction from Ahmedabad BRTS (Janmarg) and Surat BRTS (Sitilink) from cities of Ahmedabad and Surat city respectively. Neuro Fuzzy was conceived as a Universal Approximator by Jang (1993) incorporating Fuzzy Inference system in the artificial neural network framework, exploiting the advantages of both the methods. Adaptability and learning of NNs and Inference of Fuzzy reasoning has made it reasonable to use it as a Universal Approximator which is highly accurate as well as it can deal with uncertain and vague character of the Human perception

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Modeling a decision support system for buildable designs

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Production/maintenance cooperative scheduling using multi-agents and fuzzy logic

    Get PDF
    Within companies, production is directly concerned with the manufacturing schedule, but other services like sales, maintenance, purchasing or workforce management should also have an influence on this schedule. These services often have together a hierarchical relationship, i.e. the leading function (most of the time sales or production) generates constraints defining the framework within which the other functions have to satisfy their own objectives. We show how the multi-agent paradigm, often used in scheduling for its ability to distribute decision-making, can also provide a framework for making several functions cooperate in the schedule performance. Production and maintenance have been chosen as an example: having common resources (the machines), their activities are actually often conflicting. We show how to use a fuzzy logic in order to model the temporal degrees of freedom of the two functions, and show that this approach may allow one to obtain a schedule that provides a better compromise between the satisfaction of the respective objectives of the two functions

    Neural Networks for Target Selection in Direct Marketing

    Get PDF
    Partly due to a growing interest in direct marketing, it has become an important application field for data mining. Many techniques have been applied to select the targets in commercial applications, such as statistical regression, regression trees, neural computing, fuzzy clustering and association rules. Modeling of charity donations has also recently been considered. The availability of a large number of techniques for analyzing the data may look overwhelming and ultimately unnecessary at first. However, the amount of data used in direct marketing is tremendous. Further, there are different types of data and likely strong nonlinear relations amongst different groups within the data. Therefore, it is unlikely that there will be a single method that can be used under all circumstances. For that reason, it is important to have access to a range of different target selection methods that can be used in a complementary fashion. In this respect, learning systems such as neural networks have the advantage that they can adapt to the nonlinearity in the data to capture the complex relations. This is an important motivation for applying neural networks for target selection. In this report, neural networks are applied to target selection in modeling of charity donations. Various stages of model building are described by using data from a large Dutch charity organization as a case. The results are compared with the results of more traditional methods for target selection such as logistic regression and CHAID.neural networks;data mining;direct mail;direct marketing;target selection

    Reducing the Total Product Cost at the Product Design Stage

    Get PDF
    Currently used decision support systems allow decision-makers to evaluate the product performance, including a net present value analysis, in order to enable them to make a decision regarding whether or not to carry out a new product development project. However, these solutions are inadequate to provide simulations for verifying a possibility of reducing the total product cost through changes in the product design phase. The proposed approach provides a framework for identifying possible variants of changes in product design that can reduce the cost related to the production and after-sales phase. This paper is concerned with using business analytics to cost estimation and simulation regarding changes in product design. The cost of a new product is estimated using analogical and parametric models that base on artificial neural networks. Relationships identified by computational intelligence are used to prepare cost estimation and simulations. A model of product development, production process, and admissible resources is described in terms of a constraint satisfaction problem that is effectively solved using constraint programming techniques. The proposed method enables the selection of a more appropriate technique to cost estimation, the identification of a set of possible changes in product design towards reducing the total product cost, and it is the framework for developing a decision support system. In this aspect, it outperforms current methods dedicated for evaluating the potential of a new product
    corecore