73 research outputs found

    Optical types of inland and coastal waters

    Get PDF
    Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in‐water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n = 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions

    Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters

    Get PDF
    The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea continuum including the Danube-Black Sea is considerable

    Remote sensing, numerical modelling and ground truthing for analysis of lake water quality and temperature

    Get PDF
    Freshwater accounts for just 2.5% of the earth’s water resources, and its quality and availability are becoming an issue of global concern in the 21st century. Growing human population, over-exploitation of water sources and pressures of global warming mean that both water quantity and quality are affected. In order to effectively manage water quality there is a need for increased monitoring and predictive modelling of freshwater resources. To address these concerns in New Zealand inland waters, an approach which integrates biological and physical sciences is needed. Remote sensing has the potential to allow this integration and vastly increase the temporal and spatial resolution of current monitoring techniques, which typically involve collecting grab-samples. In a complementary way, lake modelling has the potential to enable more effective management of water resources by testing the effectiveness of a range of possible management scenarios prior to implementation. Together, the combination of remote sensing and modelling data allows for improved model initialisation, calibration and validation, which ultimately aid in understanding of complex lake ecosystem processes. This study investigated the use of remote sensing using empirical and semi-analytical algorithms for the retrieval of chlorophyll a (chl a), tripton, suspended minerals (SM), total suspended sediment (SS) and water surface temperature. It demonstrated the use of spatially resolved statistical techniques for comparing satellite estimated and 3-D simulated water quality and temperature. An automated procedure was developed for retrieval of chl a from Landsat Enhanced Thematic Mapper (ETM+) imagery, using 106 satellite images captured from 1999 to 2011. Radiative transfer-based atmospheric correction was applied to images using the Second Simulation of the Satellite in the Solar Spectrum model (6sv). For the estimation of chl a over a time series of images, the use of symbolic regression resulted in a significant improvement in the precision of chl a hindcasts compared with traditional regression equations. Results from this investigation suggest that remote sensing provides a valuable tool to assess temporal and spatial distributions of chl a. Bio-optical models were applied to quantify the physical processes responsible for the relationship between chl a concentrations and subsurface irradiance reflectance used in regression algorithms, allowing the identification of possible sources of error in chl a estimation. While the symbolic regression model was more accurate than traditional empirical models, it was still susceptible to errors in optically complex waters such as Lake Rotorua, due to the effect of variations of SS and CDOM on reflectance. Atmospheric correction of Landsat 7 ETM+ thermal data was carried out for the purpose of retrieval of lake water surface temperature in Rotorua lakes, and Lake Taupo, North Island, New Zealand. Atmospheric correction was repeated using four sources of atmospheric profile data as input to a radiative transfer model, MODerate resolution atmospheric TRANsmission (MODTRAN) v.3.7. The retrieved water temperatures from 14 images between 2007 and 2009 were validated using a high-frequency temperature sensor deployed from a mid-lake monitoring buoy at the water surface of Lake Rotorua. The most accurate temperature estimation for Lake Rotorua was with radiosonde data as an input into MODTRAN, followed by Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2, Atmospheric Infrared Sounder (AIRS) Level 3, and NASA data. Retrieved surface water temperature was used for assessing spatial heterogeneity of surface water temperature simulated with a three-dimensional (3-D) hydrodynamic model (ELCOM) of Lake Rotoehu, located approximately 20 km east of Lake Rotorua. This comparison demonstrated that simulations reproduced the dominant horizontal variations in surface water temperature in the lake. The transport and mixing of a geothermal inflow and basin-scale circulation patterns were inferred from thermal distributions from satellite and model estimations of surface water temperature and a spatially resolved statistical evaluation was used to validate simulations. This study has demonstrated the potential of accurate satellite-based thermal monitoring to validate water surface temperature simulated by 3-D hydrodynamic models. Semi-analytical and empirical algorithms were derived to determine spatial and temporal variations in SS in Lake Ellesmere, South Island, New Zealand, using MODIS band 1. The semi-analytical model and empirical model had a similar level of precision in SS estimation, however, the semi-analytical model has the advantage of being applicable to different satellite sensors, spatial locations, and SS concentration ranges. The estimations of SS concentration (and estimated SM concentration) from the semi-analytical model were used for a spatially resolved validation of simulations of SM derived from ELCOM-CAEDYM. Visual comparisons were compared with spatially-resolved statistical techniques. The spatial statistics derived from the Map Comparison Kit allowed a non-subjective and quantitative method to rank simulation performance on different dates. The visual and statistical comparison between satellite estimated and model simulated SM showed that the model did not perform well in reproducing both basin-scale and fine-scale spatial variation in SM derived from MODIS satellite imagery. Application of the semi-analytical model to estimate SS over the lifetime of the MODIS sensor will greatly extend its spatial and temporal coverage for historical monitoring purposes, and provide a tool to validate SM simulated by 1-D and 3-D models on a daily basis. A bio-optical model was developed to derive chl a, SS concentrations, and coloured dissolved organic matter /detritus absorption at 443 nm, from MODIS Aqua subsurface remote sensing reflectance of Lake Taupo, a large, deep, oligotrophic lake in North Island, New Zealand. The model was optimised using in situ inherent optical properties (IOPs) from the literature. Images were atmospherically corrected using the radiative transfer model 6sv. Application of the bio-optical model using a single chl a-specific absorption spectrum (a*ϕ(λ)) resulted in low correlation between estimated and observed values. Therefore, two different absorption curves were used, based on the seasonal dominance of phytoplankton phyla with differing absorption properties. The application of this model resulted in reasonable agreement between modelled and in situ chl a concentrations. Highest concentrations were observed during winter when Bacillariophytes (diatoms) dominated the phytoplankton assemblage. On 4 and 5 March 2004 an unusually large turbidity current was observed originating from the Tongariro River inflow in the south-east of the lake. In order to resolve fine details of the plume, empirical relationships were developed between MODIS band 1 reflectance (250 m resolution) and SS estimated from MODIS bio-optical features (1 km resolution) were used estimate SS at 250 m resolution. Complex lake circulation patterns were observed including a large clockwise gyre. With the development of this bio-optical model MODIS can potentially be used to remotely sense water quality in near real time, and the relationship developed for B1 SS allows for resolution of fine-scale features such turbidity currents

    Optical types of inland and coastal waters

    Get PDF
    Inland and coastal waterbodies are critical components of the global biosphere. Timely monitoring is necessary to enhance our understanding of their functions, the drivers impacting on these functions and to deliver more effective management. The ability to observe waterbodies from space has led to Earth observation (EO) becoming established as an important source of information on water quality and ecosystem condition. However, progress toward a globally valid EO approach is still largely hampered by inconsistences over temporally and spatially variable in-water optical conditions. In this study, a comprehensive dataset from more than 250 aquatic systems, representing a wide range of conditions, was analyzed in order to develop a typology of optical water types (OWTs) for inland and coastal waters. We introduce a novel approach for clustering in situ hyperspectral water reflectance measurements (n = 4045) from multiple sources based on a functional data analysis. The resulting classification algorithm identified 13 spectrally distinct clusters of measurements in inland waters, and a further nine clusters from the marine environment. The distinction and characterization of OWTs was supported by the availability of a wide range of coincident data on biogeochemical and inherent optical properties from inland waters. Phylogenetic trees based on the shapes of cluster means were constructed to identify similarities among the derived clusters with respect to spectral diversity. This typification provides a valuable framework for a globally applicable EO scheme and the design of future EO missions

    Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle

    Get PDF
    This study takes advantage of a regionally specific algorithm and the characteristics of Medium Resolution Imaging Spectrometer (MERIS) in order to deliver more accurate, detailed chlorophyll a (chla) maps of optically complex coastal waters during an upwelling cycle. MERIS full resolution chla concentrations and in situ data were obtained on the Galician (NW Spain) shelf and in three adjacent rias (embayments), sites of extensive mussel culture that experience frequent harmful algal events. Regionally focused algorithms (Regional neural network for rias Baixas or NNRB) for the retrieval of chla in the Galician rias optically complex waters were tested in comparison to sea-truth data. The one that showed the best performance was applied to a series of six MERIS (FR) images during a summer upwelling cycle to test its performance. The best performance parameters were given for the NN trained with high-quality data using the most abundant cluster found in the rias after the application of fuzzy c-mean clustering techniques (FCM). July 2008 was characterized by three periods of different meteorological and oceanographic states. The main changes in chla concentration and distribution were clearly captured in the images. After a period of strong upwelling favorable winds a high biomass algal event was recorded in the study area. However, MERIS missed the high chlorophyll upwelled water that was detected below surface in the ria de Vigo by the chla profiles, proving the necessity of in situ observations. Relatively high biomass “patches” were mapped in detail inside the rias. There was a significant variation in the timing and the extent of the maximum chla areas. The maps confirmed that the complex spatial structure of the phytoplankton distribution in the rias Baixas is affected by the surface currents and winds on the adjacent continental shelf. This study showed that a regionally specific algorithm for an ocean color sensor with the characteristics of MERIS in combination with in situ data can be of great help in chla monitoring, detection and study of high biomass algal events in an area affected by coastal upwelling such as the rias Baixas

    Investigation of Colored Dissolved Organic Matter and Dissolved Organic Carbon Using Combination of Ocean Color Data and Numerical Model in the Northern Gulf of Mexico

    Get PDF
    The first part of this thesis includes evaluating and developing empirical band ratio algorithms for the estimation of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) for SeaWiFS, MODIS and MERIS ocean color sensors for the northern Gulf of Mexico. For CDOM, matchup comparison between SeaWiFS-derived CDOM absorption coefficients and in situ absorption measurements at 412 nm (aCDOM(412)) were examined using the D’Sa et al. (2006) and the Mannino et al. (2008) algorithms. These reflectance band ratio algorithms were also assessed to retrieve aCDOM(412) from MODIS and MERIS data using the Rrs(488)/Rrs(555) and Rrs(510)/Rrs(560) band ratios, respectively. Since DOC cannot be measured directly by remote sensors, CDOM as the colored component of DOC is utilized as a proxy to estimate DOC remotely. A seasonal relationship between CDOM and DOC was established for the summer and spring-winter with high correlation for both periods. Seasonal band ratio empirical algorithms to estimate DOC were thus developed. In the second part of this study, a numerical model to study CDOM dynamics in the northern Gulf of Mexico was examined. To derive surface CDOM concentration maps from simulated salinity output from the Navy Coastal Ocean Model (NCOM), a highly correlated linear inverse relationship between CDOM and salinity is required which was examined for both inner-shelf and outer-shelf areas for the spring-winter and the summer periods. Applying these relationships on NCOM simulated salinity resulted in hourly maps of CDOM exhibiting high consistency with CDOM patterns derived from SeaWiFS sensor. Overlaying the NCOM-derived CDOM maps on the simulated currents showed the profound effect of currents on CDOM advection. Cold fronts strongly impact CDOM advection in both the inner and outer shelves by flushing CDOM-laden waters out of the coastal bays

    Challenges and New Advances in Ocean Color Remote Sensing of Coastal Waters

    Get PDF
    Knowing that coastal areas concentrate about 60% of the world's population (within 100 km from the coast), that 75-90% of the global sink of suspended river load takes place in coastal waters in which about 15% of the primary production occurs, the ecological, societal and economical value of these areas are obvious (fish resources, aquaculture, water quality information, recreation areas management, global carbon budget, etc). In that context, precise assessment of suspended particulate matter (SPM) concentrations and of the phenomena controlling its temporal variability is a key objective for many research fields in coastal areas. SPM which encompasses organic (living and non-living) and inorganic matter controls the penetration of light into the water and brings new nutrients into the system, both key parameters influencing phytoplankton primary production. Concentrations and availability of SPM are also known to control rates of food intake, growth and reproduction for various filter feeder organisms. Phytoplankton is highly sensitive to environmental perturbations (such as nutrient inputs, light, and turbulence). The abundance, biomass and dynamics of phytoplankton in coastal areas therefore reflect the prevailing environmental conditions and represent key parameters for assessing information on the ecological conditions, as well as on the coastal water quality. Because phytoplankton is highly sensitive to environmental perturbations [1], its distribution patterns and temporal variability represent good indicators of the ecological conditions of a defined region [2, 3]. Coastal waters also host complex ecosystems and represent important fishery areas that support industry and provide livelihood to coastal settlements. The food chain in the coastal ocean is generally short (especially in upwelling systems, having as low as three trophic levels) whereas the open ocean food web presents up to six trophic levels [4]. As a result, when compared to the open ocean, a relative lower fraction of the primary production gets respired in the coastal ocean while a higher fraction reaches the uppermost trophic level (fish) [5] or is exported to adjacent areas (coastal or open sea)..

    Retrieval of Chlorophyll-a concentration and associated product uncertainty in optically diverse lakes and reservoirs

    Get PDF
    Satellite product uncertainty estimates are critical for the further development and evaluation of remote sensing algorithms, as well as for the user community (e.g., modelers, climate scientists, and decision-makers). Optical remote sensing of water quality is affected by significant uncertainties stemming from correction for atmospheric effects as well as a lack of algorithms that can be universally applied to waterbodies spanning several orders of magnitude in non-covarying substance concentrations. We developed a method to produce estimates of Chlorophyll-a (Chla) satellite product uncertainty on a pixel-by-pixel basis within an Optical Water Type (OWT) classification scheme. This scheme helps to dynamically select the most appropriate algorithms for each satellite pixel, whereas the associated uncertainty informs downstream use of the data (e.g., for trend detection or modeling) as well as the future direction of algorithm research. Observations of Chla were related to 13 previously established OWT classes based on their corresponding water-leaving reflectance (Rw), each class corresponding to specific bio-optical characteristics. Uncertainty models corresponding to specific algorithm - OWT combinations for Chla were then expressed as a function of OWT class membership score. Embedding these uncertainty models into a fuzzy OWT classification approach for satellite imagery allows Chla and associated product uncertainty to be estimated without a priori knowledge of the biogeochemical characteristics of a water body. Following blending of Chla algorithm results according to per-pixel fuzzy OWT membership, Chla retrieval shows a generally robust response over a wide range of class memberships, indicating a wide application range (ranging from 0.01 to 362.5 mg/m3). Low OWT membership scores and high product uncertainty identify conditions where optical water types need further exploration, and where biogeochemical satellite retrieval algorithms require further improvement. The procedure is demonstrated here for the Medium Resolution Imaging Spectrometer (MERIS) but could be repeated for other sensors, atmospheric correction methods and optical water quality variables

    Retrieval of Lake Erie Water Quality Parameters from Satellite Remote Sensing and Impact on Simulations with a 1-D Lake Model

    Get PDF
    Lake Erie is a freshwater lake, and the most southern of the Laurentian Great Lakes in North America. It is the smallest by volume, the fourth largest in surface area (25,700 km2), and the shallowest of the Laurentian Great Lakes. The lake’s high productivity and warm weather in its watershed has attracted one-third of the total human population of the Great Lake’s basin. The industrial and agricultural activities of this huge population has caused serious environmental problems for Lake Erie namely harmful algal blooms, dissolved organic/inorganic matters from river inputs, and sediment loadings. If these sorts of water contaminations exceed a certain level, it can seriously influence the lake ecosystem. Hence, an effective and continuous water quality monitoring program is of outmost importance for Lake Erie. The use of Earth observation satellites to improve monitoring of environmental changes in water bodies has been receiving increased attention in recent years. Satellite observations can provide long term spatial and temporal trends of water quality indicators which cannot be achieved through discontinuous conventional point-wise in situ sampling. Different regression-based empirical models have been developed in the literature to derive the water optical properties from a single (or band ratio of) remote sensing reflectance (radiance). In situ measurements are used to build these regressions. The repeated in situ measurements in space and/or time causes clustered and correlated data that violates the assumption of regression models. Considering this correlation in developing regression models was one of the topics examined in this thesis. More complicated semi-analytical models are applied in Case II waters, aiming to distinguish several constituents confounding water-leaving signals more effectively. The MERIS neural network (NN) algorithms are the most widely used among semi-analytical models. The applicability of these algorithms to derive chl-a concentration and Secchi Disk Depth (SDD) in Lake Erie was assessed for the first time in this thesis. Satellite-observations of water turbidity were then coupled with a 1-D lake model to improve its performance on Lake Erie, where the common practice is to use a constant value for water turbidity in the model due to insufficient in situ measurements of water turbidity for lakes globally. In the first chapter, four well-established MERIS NN algorithms to derive chl-a concentration as well as two band-ratio chl-a related indices were evaluated against in situ measurements. The investigated products are those produced by NN algorithms, including Case 2 Regional (C2R), Eutrophic (EU), Free University of Berlin WeW WATER processor (FUB/WeW), and CoastColour (CC) processors, as well as from band-ratio algorithms of fluorescence line height (FLH) and maximum chlorophyll index (MCI). Two approaches were taken to compare and evaluate the performance of these algorithms to predict chl-a concentration after lake-specific calibration of the algorithms. First, all available chl-a matchups, which were collected from different locations on the lake, were evaluated at once. In the second approach, a classification of three optical water types was applied, and the algorithms’ performance was assessed for each type, individually. The results of this chapter show that the FUB/WeW processor outperforms other algorithms when the full matchup data of the lake was used (root mean square error (RMSE) = 1.99 mg m-3, index-of-agreement (I_a) = 0.67). However, the best performing algorithm was different when each water optical type was investigated individually. The findings of this study provide practical and valuable information on the effectiveness of the already existing MERIS-based algorithms to derive the trophic state of Lake Erie, an optically complex lake. Unlike the first chapter, where physically-based and already trained algorithms were implemented to evaluate satellite derived chl-a concentration, in the next chapter, two lake-specific, robust semi-empirical algorithms were developed to derive chl-a and SDD using Linear Mixed Effect (LME) models. LME considers the correlation that exists in the field measurements which have been repeatedly performed in space and time. Each developed algorithm was then employed to investigate the monthly-averaged spatial and temporal trends of chl-a concentration and water turbidity during the period of 2005-2011. SDD was used as the indicator of water turbidity. LME models were developed between the logarithmic scale of the parameters and the band ratio of B7:665 nm to B9:708.75 nm for log10chl-a, and the band ratio of B6:620 nm to B4:510 nm for log10SDD. The models resulted in RMSE of 0.30 for log10chl-a and 0.19 for log10SDD. Maps produced with the two LME models revealed distinct monthly patterns for different regions of the lake that are in agreement with the biogeochemical properties of Lake Erie. Lastly the water turbidity (extinction coefficient; Kd) of Lake Erie was estimated using the globally available satellite-based CC product. The CC-derived Kd product was in a good agreement with the SDD field observations (RMSE=0.74 m-1, mean bias error (MBE)=0.53 m-1, I_a=0.53). CC-derived Kd was then used as input for simulations with the 1-D Freshwater Lake (FLake) model. An annual average constant Kd value calculated from the CC product improved simulation results of lake surface water temperature (LSWT) compared to a “generic” constant value (0.2 m-1) used in previous studies (CC lake-specific yearly average Kd value: RMSE=1.54 ÂșC, MBE= -0.08 ÂșC; generic constant Kd value: RMSE=1.76 ÂșC, MBE= -1.26 ÂșC). Results suggest that a time-independent, lake-specific, and constant Kd value from CC can improve FLake LSWT simulations with sufficient accuracy. A sensitivity analysis was also conducted to assess the performance of FLake to simulate LSWT, mean water column temperature (MWCT) and mixed layer depth (MLD) using different values of Kd. Results showed that the model is very sensitive to the variations of Kd, particularly when Kd value is below 0.5 m-1. The sensitivity of FLake to Kd variations was more pronounced in simulations of MWCT and MLD. This study shows that a global mapping of the extinction coefficient can be created using satellite-based observations of lakes optical properties to improve the 1-D FLake model. Overall, results from this thesis clearly demonstrate the benefits of remote sensing measurements of water quality parameters (such as chl-a concentration and water turbidity) for lake monitoring. Also, this research shows that the integration of space-borne water clarity (extinction coefficient) measurements into the 1-D FLake model improves simulations of LSWT

    Coastal and Inland Aquatic Data Products for the Hyperspectral Infrared Imager (HyspIRI)

    Get PDF
    The HyspIRI Aquatic Studies Group (HASG) has developed a conceptual list of data products for the HyspIRI mission to support aquatic remote sensing of coastal and inland waters. These data products were based on mission capabilities, characteristics, and expected performance. The topic of coastal and inland water remote sensing is very broad. Thus, this report focuses on aquatic data products to keep the scope of this document manageable. The HyspIRI mission requirements already include the global production of surface reflectance and temperature. Atmospheric correction and surface temperature algorithms, which are critical to aquatic remote sensing, are covered in other mission documents. Hence, these algorithms and their products were not evaluated in this report. In addition, terrestrial products (e.g., land use land cover, dune vegetation, and beach replenishment) were not considered. It is recognized that coastal studies are inherently interdisciplinary across aquatic and terrestrial disciplines. However, products supporting the latter are expected to already be evaluated by other components of the mission. The coastal and inland water data products that were identified by the HASG, covered six major environmental and ecological areas for scientific research and applications: wetlands, shoreline processes, the water surface, the water column, bathymetry and benthic cover types. Accordingly, each candidate product was evaluated for feasibility based on the HyspIRI mission characteristics and whether it was unique and relevant to the HyspIRI science objectives
    • 

    corecore