939 research outputs found

    Robust and flexible multi-scale medial axis computation

    Get PDF
    The principle of the multi-scale medial axis (MMA) is important in that any object is detected at a blurring scale proportional to the size of the object. Thus it provides a sound balance between noise removal and preserving detail. The robustness of the MMA has been reflected in many existing applications in object segmentation, recognition, description and registration. This thesis aims to improve the computational aspects of the MMA. The MMA is obtained by computing ridges in a “medialness” scale-space derived from an image. In computing the medialness scale-space, we propose an edge-free medialness algorithm, the Concordance-based Medial Axis Transform (CMAT). It not only depends on the symmetry of the positions of boundaries, but also is related to the symmetry of the intensity contrasts at boundaries. Therefore it excludes spurious MMA branches arising from isolated boundaries. In addition, the localisation accuracy for the position and width of an object, as well as the robustness under noisy conditions, is preserved in the CMAT. In computing ridges in the medialness space, we propose the sliding window algorithm for extracting locally optimal scale ridges. It is simple and efficient in that it can readily separate the scale dimension from the search space but avoids the difficult task of constructing surfaces of connected maxima. It can extract a complete set of MMA for interfering objects in scale-space, e.g. embedded or adjacent objects. These algorithms are evaluated using a quantitative study of their performance for 1-D signals and qualitative testing on 2-D images

    A personal identification biometric system based on back-of-hand vein patterns

    Get PDF
    This report describes research on the use of back-of-hand vein patterns as a means of uniquely identifying people. In particular it describes a prototype biometric system developed by the Australian Institute of Security and Applied Technology (AISAT). This system comprises an infrared cold source, a monochrome CCD camera, a monochrome frame-grabber, a personal computer, and custom image acquisition, processing, registration, and matching software. The image processing algorithms are based on Mathematical Morphology. Registration is performed using rotation and translation with respect to the centroid of the two-dimensional domain of a hand. Vein patterns are stored as medial axis representations. Matching involves comparing a given medial axis pattern against a library of patterns using constrained sequential correlation. The matching is two-fold: a newly acquired signature is matched against a dilated library signature, and then the library signature is matched against the dilated acquired signature; this is necessary because of the positional noise exhibited by the back-of-hand veins. The results of a cross-matching experiment for a sample of 20 adults and more than 100 hand images is detailed. In addition preliminary estimates of the false acceptance rate (FAR) and false rejection rate (FRR) for the prototype system are given. Fuzzy relaxation on an association graph is discussed as an alternative to sequential correlation for the matching of vein signatures. An example is provided (including a C program) illustrating the matching process for a pair of signatures obtained from the same hand. The example demonstrates the ability of the fuzzy relaxation method to deal with segmentation errors

    A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures

    Get PDF
    This paper presents a novel methodology to generate deposition paths for wire and arc additive manufacturing (WAAM). The medial axis transformation (MAT), which represents the skeleton of a given geometry, is firstly extracted to understand the geometry. Then a deposition path that is based on the MAT is efficiently generated. The resulting MAT-based path is able to entirely fill any given cross-sectional geometry without gaps. With the variation of step-over distance, material efficiency alters accordingly for both solid and thin-walled structures. It is found that thin-walled structures are more sensitive to step-over distance in terms of material efficiency. The optimal step-over distance corresponding to the maximum material efficiency can be achieved for various geometries, allowing the optimization of the deposition parameters. Five case studies of complex models including solid and thin-walled structures are used to test the developed methodology. Experimental comparison between the proposed MAT-based path patterns and the traditional contour path patterns demonstrate significant improved performance in terms of gap-free cross-sections. The proposed path planning strategy is shown to be particularly beneficial for WAAM of thin-walled structures

    Medialness and the Perception of Visual Art

    Get PDF
    In this article we explore the practical use of medialness informed by perception studies as a representation and processing layer for describing a class of works of visual art. Our focus is towards the description of 2D objects in visual art, such as found in drawings, paintings, calligraphy, graffiti writing, where approximate boundaries or lines delimit regions associated to recognizable objects or their constitutive parts. We motivate this exploration on the one hand by considering how ideas emerging from the visual arts, cartoon animation and general drawing practice point towards the likely importance of medialness in guiding the interaction of the traditionally trained artist with the artifact. On the other hand, we also consider recent studies and results in cognitive science which point in similar directions in emphasizing the likely importance of medialness, an extension of the abstract mathematical representation known as ‘medial axis’ or ‘Voronoi graphs’, as a core feature used by humans in perceiving shapes in static or dynamic scenarios.We illustrate the use of medialness in computations performed with finished artworks as well as artworks in the process of being created, modified, or evolved through iterations. Such computations may be used to guide an artificial arm in duplicating the human creative performance or used to study in greater depth the finished artworks. Our implementations represent a prototyping of such applications of computing to art analysis and creation and remain exploratory. Our method also provides a possible framework to compare similar artworks or to study iterations in the process of producing a final preferred depiction, as selected by the artist

    Improved modelling of the human cerebral vasculature

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The mineralizing effect of zinc oxide-modified hydroxyapatite-based sealer on radicular dentin

    Get PDF
    Objective To evaluate the remineralization ability of three endodontic sealer materials at different root dentin regions. Material and methods Cervical, medial and apical root dentin surfaces were treated with two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite); an epoxy resin-based canal sealer, AH Plus; and gutta-percha. Remineralization, at the inner and outer zones of dentin disk surfaces, was studied by nanohardness (Hi) and Raman analysis. Nano-roughness and collagen fibrils width measurements were performed. Numerical data, at 24 h or 12 m, were analyzed by ANOVA and Student-Newman-Keuls (P<0.05). Results At the outer and inner zones of cervical dentin treated with oxipatite, the highest Hi after 12 m of immersion was achieved. The same group showed the highest intensity of phosphate peak, markers for calcification and crystallinity. Nanoroughness was lower and fibrils diameter was higher at the inner zone of dentin treated with oxipatite. Dentin mineralization occurred in every region of root dentin treated with oxipatite and calcypatite, especially at inner zone of dentin after 12 m. Conclusions Oxipatite, reinforced the inner root zone at any third of radicular dentin, by increasing both nanohardness and remineralization. When using calcypatite, the highest nanohardness was found at the apical third of the inner root dentin, but the lowest mechanical performance was obtained at the cervical and the medial thirds of the roots. Therefore, application of oxipatite as sealing cement of root canals is recommended. Clinical relevance Oxipatite, when used as endodontic sealing material, strengthens radicular dentin.Project MAT2017-85999-P MINECO/AEI/FEDER/UE supported by the Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (FEDER)

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    Zoom invariant vision of figural shape: The mathematics of cores

    Get PDF
    Believing that figural zoom invariance and the cross-figural boundary linking implied by medial loci are important aspects of object shape, we present the mathematics of and algorithms for the extraction of medial loci directly from image intensities. The medial loci called cores are defined as generalized maxima in scale space of a form of medial information that is invariant to translation, rotation, and in particular, zoom. These loci are very insensitive to image disturbances, in strong contrast to previously available medial loci, as demonstrated in a companion paper. Core-related geometric properties and image object representations are laid out which, together with the aforementioned insensitivities, allow the core to be used effectively for a variety of image analysis objectives.

    Point-based Medialness for Animal and Plant Identification

    Get PDF
    We introduce the idea of using a perception-based medial point description [9] of a natural form (2D static or in movement) as a framework for a part-based shape representation which can then be efficiently used in biological species identification and matching tasks. The first step is one of fuzzy medialness measurements of 2D segmented objects from intensity images which emphasises main shape information characteristics of an object’s parts (e.g. concavities and folds along a contour). We distinguish interior from exterior shape description. Interior medialness is used to characterise deformations from straightness, corners and necks, while exterior medialness identifies the main concavities and inlands which are useful to verify parts extent and reason about articulation and movement. In a second step we identify a set of characteristic features points built from three types. We define (i) an Interior dominant point as a well localised peak value in medialness representation, while (ii) an exterior dominant point is evaluated by identifying a region of concavity sub-tended by a minimum angular support. Furthermore, (iii) convex point are extracted from the form to further characterise the elongation of parts. Our evaluated feature points, together are sufficiently invariant to shape move ment, where the articulation in moving objects are characterised by exterior dominant points. In the third step, a robust shape matching algorithm is designed that finds the most relevant targets from a database of templates by comparing the dominant feature points in a scale, rotation and translation invariant way (inspired by the SIFT method [17]). The performance of our method has been tested on several databases. The robustness of the algorithm is further tested by perturbing the data-set at different scales
    corecore