110 research outputs found

    EFFICIENT ROUTING PROTOCOL ALGORITHM FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Recently, different applications of wireless sensor networks (WSNs) in the industry fields using different data transfer protocols has been developed. As the energy of sensor nodes is limited, prolonging network lifetime in WSNs considered a significant occurrence. To develop network permanence, researchers had considered energy consuming in routing protocols of WSNs by using modified Low Energy Adaptive Clustering Hierarchy. This article presents a developed effective transfer protocols for autonomic WSNs. An efficient routing scheme for wireless sensor network regarded as significant components of electronic devices is proposed. An optimal election probability of a node to be cluster head has being presented. In addition, this article uses a Voronoi diagram, which decomposes the nodes into zone around each node. This diagram used in management architecture for WSNs

    Resilient wireless sensor networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.With the increase in wireless sensor networks’ (WSN) applications as the result of enhancements in sensors’ size, battery-life and mobility, sensor nodes have become one of the most ubiquitous and relied-upon electrical appliances in recent years. In harsh and hostile environments, in the absence of centralised supervision, the effects of faults, damages and unbalanced node deployments should be taken into account as they may disturb the operation and quality of service of networks. Coverage holes (CHs) due to the correlated failures and unbalanced deployment of nodes should be considered seriously in a timely manner; otherwise, cascaded failures on the rest of the proximate sensor nodes can jeopardise networks’ integrity. Although different distributed topology control (TC) schemes have been devised to address the challenges of node failures and their dynamic behaviours, little work has been directed towards recovering CHs and/or alleviating their undesirable effects especially in Large Scale CHs (LSCH). Thus, devising CH recovery strategies for the swift detection, notification, repair and avoidance of damage events are important to increase the lifetime and resiliency of WSNs and to improve the efficacy and reliability of error-prone and energy-restricted nodes for many applications. In this research, the concepts of resiliency, fault management, network holes, CHs, TC schemes and stages of CH recovery are reviewed. By devising new TC techniques, CHs recovery strategies that partially or wholly repair LSCHs and increase the coverage of WSNs are presented such that a global pattern emerges as a result of nodes’ local interactions. In this study, we propose (1) CH detection and boundary node (B-node) selection algorithms, which B-nodes around the damaged area self-select solely based on available 1-hop information extracted from their simple geometrical and statistical features. (2) A constraint node movement algorithm based on the idea of virtual chord (v-chords) formed by B-nodes and their neighbours to partially repair CHs. By changing each B-node’s v-chord, its movement and connectivity to the rest of network can be controlled in a distributed manner. (3) Fuzzy node relocation models based on force-based movement algorithms are suitable to consider the uncertainty governed by nodes’ distributed and local interactions and the indefinite choices of movements. (4) A model of cooperative CHs recovery in which nodes move towards damaged areas in the form of disjoint spanned trees, which is inspired by nature. Based on nodes’ local interactions with their neighbours and their distances to CHs, a set of disjoint trees around the CH spans. (5) A hybrid CH recovery strategy that combines sensing power control and physical node relocation using a game theoretic approach for mobile WSNs. (6) A sink-based CH recovery via node relocation where moving nodes consider the status of sink nodes. The proposed node relocation algorithm aims to reduce the distances of moving nodes to the deployed sink nodes while repairing the CHs. The results show that proposed distributed algorithms (1)-(6) either outperform or match their counterparts within acceptable ranges. The significances of proposed algorithms are as follow: Although they are mainly designed base on the available 1-hop knowledge and local interactions of (autonomous) nodes, they result in global behaviours. They can be implemented in harsh and hostile environments in the absence of centralised operators. They are suitable for time-sensitive applications and scenarios with the security concerns that limit the amount of information exchange between nodes. The burden of decision making is spread among nodes

    Enhancing wireless sensor networks functionalities

    Full text link
     The main objective of this thesis is to develop solutions for the existing research problems in wireless sensor networks that negatively influence their performances. To achieve that four main research gaps from collecting, aggregating and transferring data with considering different deployment methods of sensor nodes were addressed

    Kinetic Gas Molecule Optimization based Cluster Head Selection Algorithm for minimizing the Energy Consumption in WSN

    Get PDF
    As the amount of low-cost and low-power sensor nodes increases, so does the size of a wireless sensor network (WSN). Using self-organization, the sensor nodes all connect to one another to form a wireless network. Sensor gadgets are thought to be extremely difficult to recharge in unfavourable conditions. Moreover, network longevity, coverage area, scheduling, and data aggregation are the major issues of WSNs. Furthermore, the ability to extend the life of the network, as well as the dependability and scalability of sensor nodes' data transmissions, demonstrate the success of data aggregation. As a result, clustering methods are thought to be ideal for making the most efficient use of resources while also requiring less energy. All sensor nodes in a cluster communicate with each other via a cluster head (CH) node. Any clustering algorithm's primary responsibility in these situations is to select the ideal CH for solving the variety of limitations, such as minimising energy consumption and delay. Kinetic Gas Molecule Optimization (KGMO) is used in this paper to create a new model for selecting CH to improve network lifetime and energy. Gas molecule agents move through a search space in pursuit of an optimal solution while considering characteristics like energy, distance, and delay as objective functions. On average, the KGMO algorithm results in a 20% increase in network life expectancy and a 19.84% increase in energy stability compared to the traditional technique Bacterial Foraging Optimization Algorithm (BFO)

    Gafor : Genetic algorithm based fuzzy optimized re-clustering in wireless sensor networks

    Get PDF
    Acknowledgments: The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this work through Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing. Funding: This research was funded by King Saud University in 2020.Peer reviewedPublisher PD

    A geometrical sink-based cooperative coverage hole recovery strategy for WSNs

    Full text link
    © 2015 IEEE. Unlike sporadic node failures, coverage holes emerging from multiple temporally-correlated node failures can severely affect quality of service in a network and put the integrity of entire wireless sensor networks at risk. Conventional topology control schemes addressing such undesirable topological changes have usually overlooked the status of participating nodes in the recovery process with respect to the deployed sink node(s) in the network. In this paper, a cooperative coverage hole recovery model is proposed which utilises the simple geometrical procedure of circle inversion. In this model, autonomous nodes consider their distances to the deployed sink node(s) in addition to their local status, while relocating towards the coverage holes. By defining suitable metrics, the performance of our proposed model performance is compared with a force-based approach

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    Energy efficient in cluster head and relay node selection for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) are defined as networks of nodes that work in a cooperative way to sense and control the surrounding environment. However, nodes contain limited energy which is the key limiting factor of the sensor network operation. In WSN architecture, the nodes are typically grouped into clusters where one node from each cluster is selected as the Cluster Head (CH) and relays utilisation to minimise energy consumption. Currently, the selection of CH based on a different combination of input variables. Example of these variables includes residual energy, communication cost, node density, mobility, cluster size and many others. Improper selection of sensor node (i.e. weak signal strength) as CH can cause an increase in energy consumption. Additionally, a direct transmission in dual-hop communication between sensor nodes (e.g. CH) with the base station (BS) uses high energy consumption. A proper selection of the relay node can assist in communication while minimising energy consumption. Therefore, the research aim is to prolong the network lifetime (i.e. reduce energy consumption) by improving the selection of CHs and relay nodes through a new combination of input variables and distance threshold approach. In CH selection, the Received Signal Strength Indicator (RSSI) scheme, residual energy, and centrality variable were proposed. Fuzzy logic was utilized in selecting the appropriate CHs based on these variables in the MATLAB. In relay node selection, the selection is based on the distance threshold according to the nearest distance with the BS. The selection of the optimal number of relay nodes is performed using K-Optimal and K-Means techniques. This ensures that all CHs are connected to at least one corresponding relay node (i.e. a 2-tier network) to execute the routing process and send the data to BS. To evaluate the proposal, the performance of Multi-Tier Protocol (MAP) and Stable Election Protocol (SEP) was compared based on 100, 200, and 800 nodes with 1 J and random energy. The simulation results showed that our proposed approach, refer to as Energy Efficient Cluster Heads and Relay Nodes (EECR) selection approach, extended the network lifetime of the wireless sensor network by 43% and 33% longer than SEP and MAP, respectively. This thesis concluded that with effective combinations of variables for CHs and relay nodes selection in static environment for data routing, EECR can effectively improve the energy efficiency of WSNs

    PERFORMANCE ANALYSIS AND OPTIMIZATION OF QUERY-BASED WIRELESS SENSOR NETWORKS

    Get PDF
    This dissertation is concerned with the modeling, analysis, and optimization of large-scale, query-based wireless sensor networks (WSNs). It addresses issues related to the time sensitivity of information retrieval and dissemination, network lifetime maximization, and optimal clustering of sensor nodes in mobile WSNs. First, a queueing-theoretic framework is proposed to evaluate the performance of such networks whose nodes detect and advertise significant events that are useful for only a limited time; queries generated by sensor nodes are also time-limited. The main performance parameter is the steady state proportion of generated queries that fail to be answered on time. A scalable approximation for this parameter is first derived assuming the transmission range of sensors is unlimited. Subsequently, the proportion of failed queries is approximated using a finite transmission range. The latter approximation is remarkably accurate, even when key model assumptions related to event and query lifetime distributions and network topology are violated. Second, optimization models are proposed to maximize the lifetime of a query-based WSN by selecting the transmission range for all of the sensor nodes, the resource replication level (or time-to-live counter) and the active/sleep schedule of nodes, subject to connectivity and quality-of-service constraints. An improved lower bound is provided for the minimum transmission range needed to ensure no network nodes are isolated with high probability. The optimization models select the optimal operating parameters in each period of a finite planning horizon, and computational results indicate that the maximum lifetime can be significantly extended by adjusting the key operating parameters as sensors fail over time due to energy depletion. Finally, optimization models are proposed to maximize the demand coverage and minimize the costs of locating, and relocating, cluster heads in mobile WSNs. In these models, the locations of mobile sensor nodes evolve randomly so that each sensor must be optimally assigned to a cluster head during each period of a finite planning horizon. Additionally, these models prescribe the optimal times at which to update the sensor locations to improve coverage. Computational experiments illustrate the usefulness of dynamically updating cluster head locations and sensor location information over time
    • …
    corecore