324 research outputs found

    Fuzzy Goal Programming Procedure to Bilevel Multiobjective Linear Fractional Programming Problems

    Get PDF
    This paper presents a fuzzy goal programming (FGP) procedure for solving bilevel multiobjective linear fractional programming (BL-MOLFP) problems. It makes an extension work of Moitra and Pal (2002) and Pal et al. (2003). In the proposed procedure, the membership functions for the defined fuzzy goals of the decision makers (DMs) objective functions at both levels as well as the membership functions for vector of fuzzy goals of the decision variables controlled by first-level decision maker are developed first in the model formulation of the problem. Then a fuzzy goal programming model to minimize the group regret of degree of satisfactions of both the decision makers is developed to achieve the highest degree (unity) of each of the defined membership function goals to the extent possible by minimizing their deviational variables and thereby obtaining the most satisfactory solution for both decision makers. The method of variable change on the under- and over-deviational variables of the membership goals associated with the fuzzy goals of the model is introduced to solve the problem efficiently by using linear goal programming (LGP) methodology. Illustrative numerical example is given to demonstrate the procedure

    An Efficient Ranking Technique for Intuitionistic Fuzzy Numbers with Its Application in Chance Constrained Bilevel Programming

    Get PDF
    The aim of this paper is to develop a new ranking technique for intuitionistic fuzzy numbers using the method of defuzzification based on probability density function of the corresponding membership function, as well as the complement of nonmembership function. Using the proposed ranking technique a methodology for solving linear bilevel fuzzy stochastic programming problem involving normal intuitionistic fuzzy numbers is developed. In the solution process each objective is solved independently to set the individual goal value of the objectives of the decision makers and thereby constructing fuzzy membership goal of the objectives of each decision maker. Finally, a fuzzy goal programming approach is considered to achieve the highest membership degree to the extent possible of each of the membership goals of the decision makers in the decision making context. Illustrative numerical examples are provided to demonstrate the applicability of the proposed methodology and the achieved results are compared with existing techniques

    Solving a type of biobjective bilevel programming problem using NSGA-II

    Get PDF
    AbstractThis paper considers a type of biobjective bilevel programming problem, which is derived from a single objective bilevel programming problem via lifting the objective function at the lower level up to the upper level. The efficient solutions to such a model can be considered as candidates for the after optimization bargaining between the decision-makers at both levels who retain the original bilevel decision-making structure. We use a popular multiobjective evolutionary algorithm, NSGA-II, to solve this type of problem. The algorithm is tested on some small-dimensional benchmark problems from the literature. Computational results show that the NSGA-II algorithm is capable of solving the problems efficiently and effectively. Hence, it provides a promising visualization tool to help the decision-makers find the best trade-off in bargaining

    An analytics-based heuristic decomposition of a bilevel multiple-follower cutting stock problem

    Get PDF
    This paper presents a new class of multiple-follower bilevel problems and a heuristic approach to solving them. In this new class of problems, the followers may be nonlinear, do not share constraints or variables, and are at most weakly constrained. This allows the leader variables to be partitioned among the followers. We show that current approaches for solving multiple-follower problems are unsuitable for our new class of problems and instead we propose a novel analytics-based heuristic decomposition approach. This approach uses Monte Carlo simulation and k-medoids clustering to reduce the bilevel problem to a single level, which can then be solved using integer programming techniques. The examples presented show that our approach produces better solutions and scales up better than the other approaches in the literature. Furthermore, for large problems, we combine our approach with the use of self-organising maps in place of k-medoids clustering, which significantly reduces the clustering times. Finally, we apply our approach to a real-life cutting stock problem. Here a forest harvesting problem is reformulated as a multiple-follower bilevel problem and solved using our approachThis publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/228

    A linear fractional bilevel programming problem with multichoice parameters

    Get PDF
    A bilevel programming problem (BLPP) is a hierarchical optimization problem where the constraint region of the upper level is implicitly determined by the lower level optimization problem. In this paper, a bilevel programming problem is considered in which the objective functions are linear fractional and the feasible region is a convex polyhedron. Linear fractional objectives in BLPP are useful in production planning, financial planning, corporate planning and so forth. Here, the cost coefficient of the objective functions are multi-choice parameters. The multi-choice parameters are replaced using interpolating polynomials. Then, fuzzy programming is used to find a compromise solution of the transformed BLPP. An algorithm is developed to find a compromise solution of BLPP. The method is illustrated with the help of an example

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    Multilevel decision-making: A survey

    Full text link
    © 2016 Elsevier Inc. All rights reserved. Multilevel decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a multiple level hierarchy. Significant efforts have been devoted to understanding the fundamental concepts and developing diverse solution algorithms associated with multilevel decision-making by researchers in areas of both mathematics/computer science and business areas. Researchers have emphasized the importance of developing a range of multilevel decision-making techniques to handle a wide variety of management and optimization problems in real-world applications, and have successfully gained experience in this area. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but also the practical developments in multilevel decision-making in business. This paper systematically reviews up-to-date multilevel decision-making techniques and clusters related technique developments into four main categories: bi-level decision-making (including multi-objective and multi-follower situations), tri-level decision-making, fuzzy multilevel decision-making, and the applications of these techniques in different domains. By providing state-of-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in theoretical research results and applications in relation to multilevel decision-making techniques

    Multi-level Multi-objective Quadratic Fractional Programming Problem with Fuzzy Parameters: A FGP Approach

    Get PDF
    The motivation behind this paper is to present multi-level multi-objective quadratic fractional programming (ML-MOQFP) problem with fuzzy parameters in the constraints. ML-MOQFP problem is an important class of non-linear fractional programming problem. These type of problems arise in many fields such as production planning, financial and corporative planning, health care and hospital planning. Firstly, the concept of the -cut and fuzzy partial order relation are applied to transform the set of fuzzy constraints into a common crisp set. Then, the quadratic fractional objective functions in each level are transformed into non-linear objective functions based on a proposed transformation. Secondly, in the proposed model, separate non-linear membership functions for each objective function of the ML-MOQFP problem are defined. Then, the fuzzy goal programming (FGP) approach is utilized to obtain a compromise solution for the ML-MOQFP problem by minimizing the sum of the negative deviational variables. Finally, an illustrative numerical example is given to demonstrate the applicability and performance of the proposed approach
    corecore