5,512 research outputs found

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Land-Cover and Land-Use Study Using Genetic Algorithms, Petri Nets, and Cellular Automata

    Get PDF
    Recent research techniques, such as genetic algorithm (GA), Petri net (PN), and cellular automata (CA) have been applied in a number of studies. However, their capability and performance in land-cover land-use (LCLU) classification, change detection, and predictive modeling have not been well understood. This study seeks to address the following questions: 1) How do genetic parameters impact the accuracy of GA-based LCLU classification; 2) How do image parameters impact the accuracy of GA-based LCLU classification; 3) Is GA-based LCLU classification more accurate than the maximum likelihood classifier (MLC), iterative self-organizing data analysis technique (ISODATA), and the hybrid approach; 4) How do genetic parameters impact Petri Net-based LCLU change detection; and 5) How do cellular automata components impact the accuracy of LCLU predictive modeling. The study area, namely the Tickfaw River watershed (711mi²), is located in southeast Louisiana and southwest Mississippi. The major datasets include time-series Landsat TM / ETM images and Digital Orthophoto Quarter Quadrangles (DOQQ’s). LCLU classification was conducted by using the GA, MLC, ISODATA, and Hybrid approach. The LCLU change was modeled by using genetic PN-based process mining technique. The process models were interpreted and input to a CA for predicting future LCLU. The major findings include: 1) GA-based LCLU classification is more accurate than the traditional approaches; 2) When genetic parameters, image parameters, or CA components are configured improperly, the accuracy of LCLU classification, the coverage of LCLU change process model, and/or the accuracy of LCLU predictive modeling will be low; 3) For GA-based LCLU classification, the recommended configuration of genetic / image parameters is generation 2000-5000, population 1000, crossover rate 69%-99%, mutation rate 0.1%-0.5%, generation gap 25%-50%, data layers 16-20, training / testing data size 10000-20000 / 5000-10000, and spatial resolution 30m-60m; 4) For genetic Petri nets-based LCLU change detection, the recommended configuration of genetic parameters is generation 500, population 300, crossover rate 59%, mutation rate 5%, and elitism rate 4%; and 5) For CA-based LCLU predictive modeling, the recommended configuration of CA components is space 6025 * 12993, state 2, von Neumann neighborhood 3 * 3, time step 2-3 years, and optimized transition rules

    Assessment of data fusion oriented on data mining approaches to enhance precision agriculture practices aimed at increase of Durum Wheat (Triticum turgidum L. var. durum) yield

    Get PDF
    In 2050, world population will reach a total of 9 billion inhabitants and their food demand have to be satisfied. Durum wheat (Triticum turgidum L. var. durum) is one of the most important food crop and its consumption is increasing worldwide. Productivity growth in agriculture and profitable returns are strongly influenced by investment in research and development, where Precision Agriculture (PA) represents an innovative way to manage farms by introducing the Information and Communication Technology (ICT) into the production process. It is known that farms activities produce large amounts of data. Today ICT allows, with electronic and software systems, to collect and transfer automatically these data, thus increasing yields and profits. In this direction significant data are processed from agricultural production, and retrieved to extract useful information important to increase the knowledge base. Data from multiple data sources can be processed by a Data Fusion (DF) approach able to combine multiple data sources into an unique database system. Raw data are transformed into useful information, thus DF improves pattern recognition, analysis of growth factors, and relationship between crops and environments. Data Fusion is synonym of Data Integration, Sensor Fusion, and Image Fusion. By means of Data Mining (DM) it is possible to extract useful information from data of the production processes thus providing new outputs concerning product quality and product “health status”. The following literature take into account the DF and DM techniques applied to Precision Agriculture (PA) and to cultivation inputs (water, nitrogen, etc.) management.  We report also last advances of DF and DM in modern agriculture and in precision durum wheat production

    An Enhanced Neural Graph based Collaborative Filtering with Item Knowledge Graph

    Get PDF
    Recommendation system is a process of filtering information to retain buyers on e-commerce sites or applications. It is used on all e-commerce sites, social media platform and multimedia platform. This recommendation is based on their own experience or experience between users. In recent days, the graph-based filtering techniques are used for the recommendation to improve the suggestions and for easy analysing. Neural graph based collaborative filtering is also one of the techniques used for recommendation system. It is implemented on the benchmark datasets like Yelp, Gowalla and Amazon books. This technique can suggest better recommendations as compared to the existing graph based or convolutional based networks. However, it requires higher processing time for convolutional neural network for performing limited suggestions. Hence, in this paper, an improved neural graph collaborative filtering is proposed. Here, the content-based filtering is performed before the collaborative filtering process. Then, the embedding layer will process on both the recommendations to provide a higher order relation between the users and items. As the suggestion is based on hybrid recommendation, the processing time of Convolutional neural network is reduced by reducing the number of epochs. Due to this, the final recommendation is not affected by the smaller number of epochs and also able to reduce its computational time. The whole process is realized in Python 3.6 under windows 10 environment on benchmark datasets Go Walla and Amazon books. Based on the comparison of recall and NDCG metric, the proposed neural graph-based filtering outperforms the collaborative filtering based on graph convolution neural network

    Monitoring land use changes using geo-information : possibilities, methods and adapted techniques

    Get PDF
    Monitoring land use with geographical databases is widely used in decision-making. This report presents the possibilities, methods and adapted techniques using geo-information in monitoring land use changes. The municipality of Soest was chosen as study area and three national land use databases, viz. Top10Vector, CBS land use statistics and LGN, were used. The restrictions of geo-information for monitoring land use changes are indicated. New methods and adapted techniques improve the monitoring result considerably. Providers of geo-information, however, should coordinate on update frequencies, semantic content and spatial resolution to allow better possibilities of monitoring land use by combining data sets
    corecore