1,476 research outputs found

    Searching for network modules

    Full text link
    When analyzing complex networks a key target is to uncover their modular structure, which means searching for a family of modules, namely node subsets spanning each a subnetwork more densely connected than the average. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial whose coefficients are determined by network topology. It may be thought of as a potential function, to be maximized, taking its values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. When suitably parametrized, this potential is shown to attain its maximum when every node concentrates its all unit membership on some module. The output thus is a partition, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.Comment: 10 page

    Full Issue

    Get PDF

    A comparison of two types of rough sets induced by coverings

    Get PDF
    Rough set theory is an important technique in knowledge discovery in databases. In covering-based rough sets, many types of rough set models were established in recent years. In this paper, we compare the covering-based rough sets defined by Zhu with ones defined by Xu and Zhang. We further explore the properties and structures of these types of rough set models. We also consider the reduction of coverings. Finally, the axiomatic systems for the lower and upper approximations defined by Xu and Zhang are constructed

    Rough sets, their extensions and applications

    Get PDF
    Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data-mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological
    corecore