134 research outputs found

    Contributions to Time-bounded Problem Solving Using Knowledge-based Techniques

    Get PDF
    Time-bounded computations represent major challenge for knowledge-based techniques. Being primarily non-algorithmic in nature, such techniques suffer from obvious open-endedness in the sense that demands on time and other resources for a particular task cannot be predicted in advance. Consequently, efficiency of traditional knowledge-based techniques in solving time-bounded problems is not at all guaranteed. Artificial Intelligence researchers working in real-time problem solving have generally tried to avoid this difficulty by improving the speed of computation (through code optimisation or dedicated hardware) or using heuristics. However, most of these shortcuts are likely to be inappropriate or unsuitable in complicated real-time applications. Consequently, there is a need of more systematic and/or general measures. We propose a two-fold improvement over traditional knowledge-based techniques for tackling this problem. Firstly, that a cache-based architecture should be used in choosing the best alternative approach (when there are two or more) compatible to the time constraints. This cache differs from traditional caches, used in other branches of computer science, in the sense that it can hold not just "ready to use" values but also knowledge suggesting which AI technique will be most suitable to meet a temporal demand in a given context. The second improvement is in processing the cached knowledge itself. We propose a technique which can be called "knowledge interpolation" and which can be applied to different forms of knowledge (such as symbolic values, rules, cases) when the keys used for cache access do not make exact matches with the labels for any cell of the cache. The research reported in this thesis comprises development of cache-based architecture and interpolation techniques, studies of their requisites and representational issues and their complementary roles in achieving time-bounded performance. Ground operations control of an airport and allocating resources for short-wave radio communications are two domains in which our proposed methods are studied

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Analysis Of Aircraft Arrival Delay And Airport On-time Performance

    Get PDF
    While existing grid environments cater to specific needs of a particular user community, we need to go beyond them and consider general-purpose large-scale distributed systems consisting of large collections of heterogeneous computers and communication systems shared by a large user population with very diverse requirements. Coordination, matchmaking, and resource allocation are among the essential functions of large-scale distributed systems. Although deterministic approaches for coordination, matchmaking, and resource allocation have been well studied, they are not suitable for large-scale distributed systems due to the large-scale, the autonomy, and the dynamics of the systems. We have to seek for nondeterministic solutions for large-scale distributed systems. In this dissertation we describe our work on a coordination service, a matchmaking service, and a macro-economic resource allocation model for large-scale distributed systems. The coordination service coordinates the execution of complex tasks in a dynamic environment, the matchmaking service supports finding the appropriate resources for users, and the macro-economic resource allocation model allows a broker to mediate resource providers who want to maximize their revenues and resource consumers who want to get the best resources at the lowest possible price, with some global objectives, e.g., to maximize the resource utilization of the system

    Shards: a system for systems

    Get PDF
    Operating system construction is often focused on the internal operation and architecture of a general purpose system. This thesis instead focuses on systems built in response to a specific purpose, design intent, application load and platform. These are referred to as custom systems in the thesis. These focused systems have known demands, constraints and requirements that provide a target for system design and optimisation. These systems can perform valuable and demanding tasks which may encourage optimisation effort. The first challenge is discovering and capturing these attributes in an encoding that can be machine manipulated. The second challenge was to use this information in a way which makes custom system construction economical, thereby widening the range of systems for which such efforts are appropriate. A bespoke and manual system construction is too expensive for the more narrowly deployed systems being considered. The operating systems field generally assumes a long lived and widely deployed general system which can afford significant design effort up-front which is not applicable in this case. The proposed solution was to balance the advantages of modular functionality with automated configuration, construction and tailoring based on the captured demands of the proposed system. Effectively the operating system is compiled as an integrated part of the system. In such an approach new inputs not relevant to general systems, such as application code and design intent, are known in advance and can inform the system generation process. This leads to an operating system structure that is determined by and optimised to the needs of the proposed system. A clean architecture is often a design goal for system construction. In this case the ideal is an operating system so integrated into the overall system there is no clearly identifiable run time structure. The Operating System could become part of the hardware, system operation or applications of the system. The final goal was to build a foundation in which construction work or advances can be captured and reused. Building a complete "system of systems" in a single project would be an impractical undertaking. The effort was to build an approach and framework which could grow as a side effect of its use and application. This allowed the lessons learnt and work done in one project to potentially enrich both this approach and the domain of operating systems
    • …
    corecore