2 research outputs found

    A fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM)

    Full text link
    © 2017 IEEE. In the spirit of twin parametric-margin support vector machine (TPMSVM) and support vector machine based on fuzzy membership values (FSVM), a new method termed as fuzzy based Lagrangian twin parametric-margin support vector machine (FLTPMSVM) is proposed in this paper to reduce the effect of the outliers. In FLTPMSVM, we assign the weights to each data samples on the basis of fuzzy membership values to reduce the effect of outliers. Also, we consider the square of the 2-norm of slack variables to make the objective function strongly convex and find the solution of the proposed FLTPMSVM by solving simple linearly convergent iterative schemes instead of solving a pair of quadratic programming problems as in case of SVM, TWSVM, FTSVM and TPMSVM. No need of external toolbox is required for FLTPMSVM. The numerical experiments are performed on artificial as well as well known real-world datasets which show that our proposed FLTPMSVM is having better generalization performance and less training cost in comparison to support vector machine, twin support vector machine, fuzzy twin support vector machine and twin parametric-margin support vector machine

    Epilepsy attacks recognition based on 1D octal pattern, wavelet transform and EEG signals

    Get PDF
    Electroencephalogram (EEG) signals have been generally utilized for diagnostic systems. Nowadays artificial intelligence-based systems have been proposed to classify EEG signals to ease diagnosis process. However, machine learning models have generally been used deep learning based classification model to reach high classification accuracies. This work focuses classification epilepsy attacks using EEG signals with a lightweight and simple classification model. Hence, an automated EEG classification model is presented. The used phases of the presented automated EEG classification model are (i) multileveled feature generation using one-dimensional (1D) octal-pattern (OP) and discrete wavelet transform (DWT). Here, main feature generation function is the presented octal-pattern. DWT is employed for level creation. By employing DWT frequency coefficients of the EEG signal is obtained and octal-pattern generates texture features from raw EEG signal and wavelet coefficients. This DWT and octal-pattern based feature generator extracts 128 × 8 = 1024 (Octal-pattern generates 128 features from a signal, 8 signal are used in the feature generation 1 raw EEG and 7 wavelet low-pass filter coefficients). (ii) To select the most useful features, neighborhood component analysis (NCA) is deployed and 128 features are selected. (iii) The selected features are feed to k nearest neighborhood classifier. To test this model, an epilepsy seizure dataset is used and 96.0% accuracy is attained for five categories. The results clearly denoted the success of the presented octal-pattern based epilepsy classification model
    corecore