59 research outputs found

    Modelling fraud detection by attack trees and Choquet integral

    Get PDF
    Modelling an attack tree is basically a matter of associating a logical ÒndÓand a logical ÒrÓ but in most of real world applications related to fraud management the Ònd/orÓlogic is not adequate to effectively represent the relationship between a parent node and its children, most of all when information about attributes is associated to the nodes and the main problem to solve is how to promulgate attribute values up the tree through recursive aggregation operations occurring at the Ònd/orÓnodes. OWA-based aggregations have been introduced to generalize ÒndÓand ÒrÓoperators starting from the observation that in between the extremes Òor allÓ(and) and Òor anyÓ(or), terms (quantifiers) like ÒeveralÓ ÒostÓ ÒewÓ ÒomeÓ etc. can be introduced to represent the different weights associated to the nodes in the aggregation. The aggregation process taking place at an OWA node depends on the ordered position of the child nodes but it doesnÕ take care of the possible interactions between the nodes. In this paper, we propose to overcome this drawback introducing the Choquet integral whose distinguished feature is to be able to take into account the interaction between nodes. At first, the attack tree is valuated recursively through a bottom-up algorithm whose complexity is linear versus the number of nodes and exponential for every node. Then, the algorithm is extended assuming that the attribute values in the leaves are unimodal LR fuzzy numbers and the calculation of Choquet integral is carried out using the alpha-cuts.Fraud detection; attack tree; ordered weighted averaging (OWA) operator; Choquet integral; fuzzy numbers.

    Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks

    Full text link
    Information fusion is an essential part of numerous engineering systems and biological functions, e.g., human cognition. Fusion occurs at many levels, ranging from the low-level combination of signals to the high-level aggregation of heterogeneous decision-making processes. While the last decade has witnessed an explosion of research in deep learning, fusion in neural networks has not observed the same revolution. Specifically, most neural fusion approaches are ad hoc, are not understood, are distributed versus localized, and/or explainability is low (if present at all). Herein, we prove that the fuzzy Choquet integral (ChI), a powerful nonlinear aggregation function, can be represented as a multi-layer network, referred to hereafter as ChIMP. We also put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient descent-based optimization in light of the exponential number of ChI inequality constraints. An additional benefit of ChIMP/iChIMP is that it enables eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP is applied to the fusion of a set of heterogeneous architecture deep models in remote sensing. We show an improvement in model accuracy and our previously established XAI indices shed light on the quality of our data, model, and its decisions.Comment: IEEE Transactions on Fuzzy System

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    SPFI: shape-preserving Choquet fuzzy integral for non-normal fuzzy set-valued evidence

    Get PDF
    Information or data aggregation is an important part of nearly all analysis problems as summarizing inputs from multiple sources is a ubiquitous goal. In this paper we propose a method for non-linear aggregation of data inputs that take the form of non-normal fuzzy sets. The proposed shape-preserving fuzzy integral (SPFI) is designed to overcome a well-known weakness of the previously-proposed sub-normal fuzzy integral (SuFI). The weakness of SuFI is that the output is constrained to have maximum membership equal to the minimum of the maximum memberships of the inputs; hence, if one input has a small height, then the output is constrained to that height. The proposed SPFI does not suffer from this weakness and, furthermore, preserves in the output the shape of the input sets. That is, the output looks like the inputs. The SPFI method is based on the well-known Choquet fuzzy integral with respect to a capacity measure, i.e., fuzzy measure. We demonstrate SPFI on synthetic and real-world data, comparing it to the SuFI and non-direct fuzzy integral (NDFI)

    Data-informed fuzzy measures for fuzzy integration of intervals and fuzzy numbers

    Get PDF
    The fuzzy integral (FI) with respect to a fuzzy measure (FM) is a powerful means of aggregating information. The most popular FIs are the Choquet and Sugeno, and most research focuses on these two variants. The arena of the FM is much more populated, including numerically derived FMs such as the Sugeno λ-measure and decomposable measure, expert-defined FMs, and data-informed FMs. The drawback of numerically derived and expert-defined FMs is that one must know something about the relative values of the input sources. However, there are many problems where this information is unavailable, such as crowdsourcing. This paper focuses on data-informed FMs, or those FMs that are computed by an algorithm that analyzes some property of the input data itself, gleaning the importance of each input source by the data they provide. The original instantiation of a data-informed FM is the agreement FM, which assigns high confidence to combinations of sources that numerically agree with one another. This paper extends upon our previous work in datainformed FMs by proposing the uniqueness measure and additive measure of agreement for interval-valued evidence. We then extend data-informed FMs to fuzzy number (FN)-valued inputs. We demonstrate the proposed FMs by aggregating interval and FN evidence with the Choquet and Sugeno FIs for both synthetic and real-world data

    Fuzzy integral for rule aggregation in fuzzy inference systems

    Get PDF
    The fuzzy inference system (FIS) has been tuned and re-vamped many times over and applied to numerous domains. New and improved techniques have been presented for fuzzification, implication, rule composition and defuzzification, leaving one key component relatively underrepresented, rule aggregation. Current FIS aggregation operators are relatively simple and have remained more-or-less unchanged over the years. For many problems, these simple aggregation operators produce intuitive, useful and meaningful results. However, there exists a wide class of problems for which quality aggregation requires non- additivity and exploitation of interactions between rules. Herein, we show how the fuzzy integral, a parametric non-linear aggregation operator, can be used to fill this gap. Specifically, recent advancements in extensions of the fuzzy integral to \unrestricted" fuzzy sets, i.e., subnormal and non- convex, makes this now possible. We explore the role of two extensions, the gFI and the NDFI, discuss when and where to apply these aggregations, and present efficient algorithms to approximate their solutions

    Fuzzy measures and integrals in MCDA

    Get PDF
    This chapter aims at a unified presentation of various methods of MCDA based onfuzzy measures (capacity) and fuzzy integrals, essentially the Choquet andSugeno integral. A first section sets the position of the problem ofmulticriteria decision making, and describes the various possible scales ofmeasurement (difference, ratio, and ordinal). Then a whole section is devotedto each case in detail: after introducing necessary concepts, the methodologyis described, and the problem of the practical identification of fuzzy measuresis given. The important concept of interaction between criteria, central inthis chapter, is explained in details. It is shown how it leads to k-additivefuzzy measures. The case of bipolar scales leads to thegeneral model based on bi-capacities, encompassing usual models based oncapacities. A general definition of interaction for bipolar scales isintroduced. The case of ordinal scales leads to the use of Sugeno integral, andits symmetrized version when one considers symmetric ordinal scales. Apractical methodology for the identification of fuzzy measures in this contextis given. Lastly, we give a short description of some practical applications.Choquet integral; fuzzy measure; interaction; bi-capacities

    The arithmetic recursive average as an instance of the recursive weighted power mean

    Get PDF
    The aggregation of multiple information sources has a long history and ranges from sensor fusion to the aggregation of individual algorithm outputs and human knowledge. A popular approach to achieve such aggregation is the fuzzy integral (FI) which is defined with respect to a fuzzy measure (FM (i.e. a normal, monotone capacity). In practice, the discrete FI aggregates information contributed by a discrete number of sources through a weighted aggregation (post-sorting), where the weights are captured by a FM that models the typically subjective ‘worth’ of subsets of the overall set of sources. While the combination of FI and FM has been very successful, challenges remain both in regards to the behavior of the resulting aggregation operators—which for example do not produce symmetrically mirrored outputs for symmetrically mirrored inputs—and also in a manifest difference between the intuitive interpretation of a stand-alone FM and its actual role and impact when used as part of information fusion with a FI. This paper elucidates these challenges and introduces a novel family of recursive average (RAV) operators as an alternative to the FI in aggregation with respect to a FM; focusing specifically on the arithmetic recursive average. The RAV is designed to address the above challenges, while also facilitating fine-grained analysis of the resulting aggregation of different combinations of sources. We provide the mathematical foundations of the RAV and include initial experiments and comparisons to the FI for both numeric and interval-valued data

    Efficient Data Driven Multi Source Fusion

    Get PDF
    Data/information fusion is an integral component of many existing and emerging applications; e.g., remote sensing, smart cars, Internet of Things (IoT), and Big Data, to name a few. While fusion aims to achieve better results than what any one individual input can provide, often the challenge is to determine the underlying mathematics for aggregation suitable for an application. In this dissertation, I focus on the following three aspects of aggregation: (i) efficient data-driven learning and optimization, (ii) extensions and new aggregation methods, and (iii) feature and decision level fusion for machine learning with applications to signal and image processing. The Choquet integral (ChI), a powerful nonlinear aggregation operator, is a parametric way (with respect to the fuzzy measure (FM)) to generate a wealth of aggregation operators. The FM has 2N variables and N(2N − 1) constraints for N inputs. As a result, learning the ChI parameters from data quickly becomes impractical for most applications. Herein, I propose a scalable learning procedure (which is linear with respect to training sample size) for the ChI that identifies and optimizes only data-supported variables. As such, the computational complexity of the learning algorithm is proportional to the complexity of the solver used. This method also includes an imputation framework to obtain scalar values for data-unsupported (aka missing) variables and a compression algorithm (lossy or losselss) of the learned variables. I also propose a genetic algorithm (GA) to optimize the ChI for non-convex, multi-modal, and/or analytical objective functions. This algorithm introduces two operators that automatically preserve the constraints; therefore there is no need to explicitly enforce the constraints as is required by traditional GA algorithms. In addition, this algorithm provides an efficient representation of the search space with the minimal set of vertices. Furthermore, I study different strategies for extending the fuzzy integral for missing data and I propose a GOAL programming framework to aggregate inputs from heterogeneous sources for the ChI learning. Last, my work in remote sensing involves visual clustering based band group selection and Lp-norm multiple kernel learning based feature level fusion in hyperspectral image processing to enhance pixel level classification
    • …
    corecore