491 research outputs found

    Prognostics and health monitoring of high power LED

    Get PDF
    Prognostics is seen as a key component of health usage monitoring systems, where prognostics algorithms can both detect anomalies in the behaviour/performance of a micro-device/system, and predict its remaining useful life when subjected to monitored operational and environmental conditions. Light Emitting Diodes (LEDs) are optoelectronic micro-devices that are now replacing traditional incadescent and fluorescent lighting, as they have many advantages including higher reliability, greater energy efficiency, long life time and faster switching speed. For some LED applications there is a requirement to monitor the health of LED lighting systems and predict when failure is likely to occur. This is very important in the case of safety critical and emergency applications. This paper provides both experimental and theoretical results that demonstrate the use of prognostics and health monitoring techniques for high power LEDs subjected to harsh operating conditions

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Diagnostic and prognostic analysis tools for monitoring degradation in aged structures

    Get PDF
    This research addresses the problem of prolonging the life of aged structures of historical value that have already outlived their original designed lives many times. While a lot of research has been carried out in the field of structural monitoring, diagnostics and prognostics for high tech industries, this is not the case for historical aged structures. Currently most maintenance projects for aged structures have focused on the instrumentation and diagnostic techniques required to detect any damage with a certain degree of success. This research project involved the development of diagnostic and prognostic tools to be used for monitoring and predicting the ‘health’ of aged structures. The diagnostic and prognostic tools have been developed for the monitoring of Cutty Sark iron structures as a first application. The concept of canary and parrot sensor devices are developed where canary devices are small, accelerated devices, which will fail according to similar failure mechanisms occurring in an aged structures and parrot devices are designed to fail at the same rate as the structure, thus mimicking the structure. The model-driven prognostic tool uses a Physics-of-Failure (PoF) model to predict remaining life of a structure. It uses a corrosion model based on the decrease in corrosion rate over time to predict remaining life of an aged iron structures. The data-driven diagnostic tool developed uses Mahalanobis Distance analysis to detect anomalies in the behaviour of a structure. Bayesian Network models are then used as a fusion method, integrating remaining life predictions from the model-driven prognostic tool with information of possible anomalies from data-driven diagnostic tool to provide a probability distribution of predicted remaining life. The diagnostics and prognostic tools are validated and tested through demonstration example and experimental tests. This research primarily looks at applying diagnostic and prognostic technologies used in high-tech industries to aged iron structures. In order to achieve this, the model-driven and data-driven techniques commonly used had to be adapted taking into consideration the particular constraints of monitoring and maintaining aged structures. The fusion technique developed is a novel approach for prognostics for aged structures and provides the flexibility often needed for diagnostic and prognostic tools

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted
    • …
    corecore